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Matching and r -factor

A set M of independent edges in a graph G = (V ,E ) is called
a matching.

A subgraph of a graph G that contains all vertices of G is
called a spanning subgraph of G .
A k-regular spanning subgraph is called a k-factor.
(A 1-factor is a matching.)

A matching that contains all vertices of a graph G is called a
perfect matching (or a 1-factor) of G .
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Alternating Path and Augmenting Path in Bipartite

(A,B)-graph

A path in G which starts in A at an unmatched vertex and
then contains, alternately, edges from E \M and from M , is
an alternating path with respect to M .

An alternating path P that ends in an unmatched vertex of B
is called an augmenting path, because we use it to turn M
into a larger matching.

Figure: Augmenting the matching M by the alternating path P
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Matchings in Bipartite Graphs

A subset U ⊂ V in a graph G = (V ,E ) is called a vertex
cover if every edge of G is incident with a vertex in U .

Theorem (König, 1931): The maximum size of a matching in
a bipartite graph G is equal to the minimum order of a vertex
cover of its edges.

Proof:

If M is a maximum matching, the minimum vertex cover
cannot have one vertex that covers two edges of M .

Therefore, the order of minimum vertex cover is at least |M |.

Next: Show that a minimum vertex cover has also at most
|M | vertices.
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Matchings in Bipartite Graphs

Claim: The order of a minimum vertex cover is at most the
size of a maximum matching M .

From every edge in a maximum matching, choose one of
its endpoints: its end in B if some alternating path ends in
that vertex, otherwise its end in A.
Call this vertex set U .

Figure: The vertex cover U

Let ab be an edge; show that either a or b lies in U .
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Hall's Condition

A matching M in a bipartite (A,B)-graph is said to saturate A
if each vertex in A is contained in some edge of M .

Hall's Condition: The condition that |N(S)| ≥ |S | for all
S ⊂ A is called the Hall's condition for �nding a matching
that saturates A.

Theorem (Hall, 1935): G contains a matching that saturates
A if and only if |N(S)| ≥ |S | for all S ⊂ A.
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First proof of Hall's Theorem

Proof by induction:

Apply induction on |A|. For |A| = 1, clearly the theorem
holds.
Let |A| ≥ 2 and assume that Hall's condition is su�cient
of a mathing that saturates A when |A| is smaller.

Case 1: |N(S)| ≥ |S |+ 1 for every non-empty S ⊂ A.

pick an edge ab, let G ′ := G − {a, b} with a ∈ A, b ∈ B .
Then

|NG ′(S)| ≥ |NG (S)| − 1 ≥ |S |
for every S ⊂ A \ {a}.
G ′ contains a matching that saturates A \ {a} by
inductive hypothesis, this matching together with ab is a
matching of G .
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First proof of Hall's Theorem

Proof by induction (continues):

Case 2: There exists a proper subset A′ ( A with
|N(A′)| = |A′|, let B ′ = N(A′).

G ′ := G [A′ ∪ B ′] contains a matching saturating A′ (Ind.
Hypo.)

G − G ′ also satis�es Hall's condition. Why?
(Consider NG (S ∪ A′) if S ⊂ A− A′ does not satisfy Hall's
condition). G − G ′ contains a matching saturating A \ A′.
Done.
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Second proof of Hall's Theorem

Proof by extremality:
Let H be a spanning subgraph of G that satis�es the Hall's
condition for A and is edge-minimal.

Observation: dH(a) ≥ 1 for every a ∈ A by Hall's condition.

Claim: dH(a) = 1 for every a ∈ A. (By this claim, we know
that the edges of H form a matching saturating A.)
Proof by contradiction:
See next slide.
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Second proof of Hall's Theorem

Assume that a has distinct neighbors b1 and b2 in H .
By de�nition of H , the graphs H − ab1 and H − ab2
violate Hall's condition.

For i = 1, 2, there is a set Ai ⊂ A containing a such that
|Ai | > |Bi | for Bi := NH−abi (Ai).

Since b1 ∈ B2 and b2 ∈ B1, we obtain

|NH(A1 ∩ A2 \ {a}| ≤ |B1 ∩ B2|
= |B1|+ |B2| − |B1 ∪ B2|
= |B1|+ |B2| − |NH(A1 ∪ A2)|
≤ |A1| − 1+ |A2| − 1− |A1 ∪ A2|
= |A1 ∩ A2 \ {a}| − 1.

Since H violates Hall's condition, this contradicts with the
initial assumption.
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Corollary: If G is a k-regular bipartite graph with k ≥ 1, then
G has a perfect matching.
Proof: Exercise.

Corollary (Petersen, 1891): Every regular graph of positive
even degree has a 2-factor.

Figure: Splitting vertices in the proof.

Say G is 2k-regular. Then G contains an Euler Tour
v0e0 . . . e`−1v`, with v` = v0.

Replace every vertex v by a pair (v−, v+)
and every edge ei = vivi+1 by the edge v+

i v
−
i+1

to obtain a
new graph G ′.

Since G ′ is a k-regular bipartite graph, by the previous
corollary, G ′ has a perfect matching (1-factor).
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Given a graph G , let us denote by CG the set of its
components, and by q(G ) the number of its odd components,
those of odd order.

Tutte's Condition: If G has a 1-factor, then

q(G − S) ≤ |S | for all S ⊂ V (G )

since every odd component of G − S will have a factor edge
between S and itself.

Surprisingly, this necessary condition is also su�cient as stated
in the theorem below.
Theorem (Tutte, 1947): A graph has a 1-factor if and only if
Tutte's condition holds.

Corollary (Petersen, 1891): Every bridgeless (with no
cut-edge) cubic (3-regular) graph has a 1-factor.
Proof: Exercise.



Given a graph G , let us denote by CG the set of its
components, and by q(G ) the number of its odd components,
those of odd order.

Tutte's Condition: If G has a 1-factor, then

q(G − S) ≤ |S | for all S ⊂ V (G )

since every odd component of G − S will have a factor edge
between S and itself.

Surprisingly, this necessary condition is also su�cient as stated
in the theorem below.
Theorem (Tutte, 1947): A graph has a 1-factor if and only if
Tutte's condition holds.

Corollary (Petersen, 1891): Every bridgeless (with no
cut-edge) cubic (3-regular) graph has a 1-factor.
Proof: Exercise.



Given a graph G , let us denote by CG the set of its
components, and by q(G ) the number of its odd components,
those of odd order.

Tutte's Condition: If G has a 1-factor, then

q(G − S) ≤ |S | for all S ⊂ V (G )

since every odd component of G − S will have a factor edge
between S and itself.

Surprisingly, this necessary condition is also su�cient as stated
in the theorem below.
Theorem (Tutte, 1947): A graph has a 1-factor if and only if
Tutte's condition holds.

Corollary (Petersen, 1891): Every bridgeless (with no
cut-edge) cubic (3-regular) graph has a 1-factor.
Proof: Exercise.



Given a graph G , let us denote by CG the set of its
components, and by q(G ) the number of its odd components,
those of odd order.

Tutte's Condition: If G has a 1-factor, then

q(G − S) ≤ |S | for all S ⊂ V (G )

since every odd component of G − S will have a factor edge
between S and itself.

Surprisingly, this necessary condition is also su�cient as stated
in the theorem below.
Theorem (Tutte, 1947): A graph has a 1-factor if and only if
Tutte's condition holds.

Corollary (Petersen, 1891): Every bridgeless (with no
cut-edge) cubic (3-regular) graph has a 1-factor.
Proof: Exercise.



Outline



Exercises

See Webpage.


