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A set M of independent edges in a graph G = (V, E) is called
a matching.

A subgraph of a graph G that contains all vertices of G is
called a spanning subgraph of G.

A k-regular spanning subgraph is called a k-factor.

(A 1-factor is a matching.)

A matching that contains all vertices of a graph G is called a
perfect matching (or a 1-factor) of G.



Alternating Path and Augmenting Path in Bipartite

(A, B)-graph

A path in G which starts in A at an unmatched vertex and
then contains, alternately, edges from E \ M and from M, is
an alternating path with respect to M.



Alternating Path and Augmenting Path in Bipartite

(A7 B)_graph

A path in G which starts in A at an unmatched vertex and
then contains, alternately, edges from E \ M and from M, is
an alternating path with respect to M.

An alternating path P that ends in an unmatched vertex of B
is called an augmenting path, because we use it to turn M
into a larger matching.
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(A7 B)_graph

A path in G which starts in A at an unmatched vertex and
then contains, alternately, edges from E \ M and from M, is
an alternating path with respect to M.

An alternating path P that ends in an unmatched vertex of B
is called an augmenting path, because we use it to turn M
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——0
\
[ ]
T

[ ] ®
M
*r—
A B A B

Figure: Augmenting the matching M by the alternating path P
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Matchings in Bipartite Graphs

A subset U C V in a graph G = (V, E) is called a vertex
cover if every edge of G is incident with a vertex in U.

Theorem (Kénig, 1931): The maximum size of a matching in
a bipartite graph G is equal to the minimum order of a vertex
cover of its edges.

Proof:

If M is a maximum matching, the minimum vertex cover
cannot have one vertex that covers two edges of M.

Therefore, the order of minimum vertex cover is at least |M|.

Next: Show that a minimum vertex cover has also at most
|M| vertices.
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if each vertex in A is contained in some edge of M.

Hall's Condition: The condition that |N(S)| > |S] for all

S C Ais called the Hall's condition for finding a matching
that saturates A.

Theorem (Hall, 1935): G contains a matching that saturates
A if and only if |[N(S)| > |S] for all S C A.
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First proof of Hall's Theorem

Proof by induction:

o Apply induction on |A|. For |A] =1, clearly the theorem
holds.
Let |A| > 2 and assume that Hall's condition is sufficient
of a mathing that saturates A when |A| is smaller.

o Case 1: |N(S)| > |S| + 1 for every non-empty S C A.

pick an edge ab, let G' := G — {a, b} with a € A, b€ B.
Then

[Ne:(S)| = [Ne(S)| =1 =S|
for every S C A\ {a}.

o G’ contains a matching that saturates A\ {a} by
inductive hypothesis, this matching together with ab is a
matching of G.
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First proof of Hall's Theorem

Proof by induction (continues):

o Case 2: There exists a proper subset A" C A with
IN(A")| = |A], let B' = N(A").

o G':= G[A' U B’] contains a matching saturating A’ (Ind.
Hypo.)

o G — G’ also satisfies Hall's condition. Why?
(Consider Ng(SUA') if S € A— A’ does not satisfy Hall's
condition). G — G’ contains a matching saturating A\ A’
Done.
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Second proof of Hall's Theorem

Proof by extremality:
Let H be a spanning subgraph of G that satisfies the Hall's
condition for A and is edge-minimal.

Observation: dy(a) > 1 for every a € A by Hall's condition.

Claim: dp(a) = 1 for every a € A. (By this claim, we know
that the edges of H form a matching saturating A.)

Proof by contradiction:

See next slide.
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o Assume that a has distinct neighbors b; and b, in H.
By definition of H, the graphs H — ab; and H — ab,
violate Hall's condition.

o For i =1,2, there is a set A; C A containing a such that
|A,| > ‘B,| for B; = NHfab,-(Ai)-

e Since b; € B, and b, € B;, we obtain

|Ni(AL N A\ {a}] < |B1 N By
= |Bi| +|B2| = [B1U By
= |Bi] + [B2| — [Nu (A1 U Ap)|
<A =1+ A —1—|AL U A,
— AN AN\ {2} — 1.

e Since H violates Hall's condition, this contradicts with the
initial assumption.
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Figure: Splitting vertices in the proof.
o Say G is 2k-regular. Then G contains an Euler Tour
Vo€ - . . €—1Vy, With v, = vg.
o Replace every vertex v by a pair (v, v™)
and every edge e; = v;v;4; by the edge v;"v;; to obtain a
new graph G'.



Corollary: If G is a k-regular bipartite graph with k > 1, then
G has a perfect matching.

Proof: Exercise.

Corollary (Petersen, 1891): Every regular graph of positive
even degree has a 2-factor.

Figure: Splitting vertices in the proof.
o Say G is 2k-regular. Then G contains an Euler Tour
Vo€ ... €1V, with Vi = .
o Replace every vertex v by a pair (v, v™)
and every edge e; = v;v;,1 by the edge vi"v_ btai
y edge € = Vv;vj41 by the edge v, v;,, to obtain a
new graph G'.
o Since G’ is a k-regular bipartite graph, by the previous
corollary, G has a perfect matching (1-factor).
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Given a graph G, let us denote by C¢ the set of its
components, and by g(G) the number of its odd components,
those of odd order.

Tutte's Condition: If G has a 1-factor, then
q(G—S) <|S| forall S C V(G)

since every odd component of G — S will have a factor edge
between S and itself.

Surprisingly, this necessary condition is also sufficient as stated
in the theorem below.

Theorem (Tutte, 1947): A graph has a 1-factor if and only if
Tutte's condition holds.

Corollary (Petersen, 1891): Every bridgeless (with no
cut-edge) cubic (3-regular) graph has a 1-factor.
Proof: Exercise.






Exercises

See Webpage.



