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De�nitions

k-coloring of a graph G : A labeling f : V (G ) =⇒ S , where |S | = k .
The vertices of the same color form a color class.

proper coloring: A coloring, where any two neighboring vertices have
di�erent colors
k-colorable: A graph is k-colorable if it has a proper k-coloring.

chromatic number of a graph G , χ(G ): The least k such that G is
k-colorable.
Examples: bipartite graphs have chromatic number 2, odd cycles,
Petersen graph have chromatic number 3. Why? What is the chromatic
number of Qn?
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Relation of χ(G ) to other graph parameters

Clique number, ω(G ): maximum order of a clique (complete subgraph) in
G .

Proposition

For every graph G , χ(G ) ≥ ω(G ) and χ(G ) ≥ n(G)
α(G) .

Remark: Can you �nd examples, for which equalities do not hold in

the above inequalities? When G = C2r+1 ∨ Ks . ω(G ) = s + 2 and
χ(G ) ≥ s + 3.

The chromatic number of the disjoint union of two graphs:

χ(G + H) = max(χ(G ), χ(H)}.

The chromatic number of the join of two graphs:

χ(G ∨ H) = χ(G ) + χ(H).
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Another Product of Graphs: Cartesian product

The cartesian product of G and H, G2H, is the graph with vertex set
V (G )× V (H) speci�ed by putting an edge between the vertices uv and
u′v ′ i�

1 u = u′ and vv ′ ∈ E (H), or

2 v = v ′ and uu′ ∈ E (G ).

Can you draw the cartesian product of two paths, say P32P4?

The chromatic number of the cartesian product of two graphs (Vizing,
1963, Aberth, 1964):

χ(G2H) = max{χ(G ), χ(H)}.
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Upper Bounds

Proposition

χ(G ) ≤ ∆(G ) + 1.

Proposition (Welsh-Powell, 1967)

If a graph G has a degree sequence d1 ≥ d2 ≥ · · · ≥ dn, then

χ(G ) ≤ 1 + max
i

min{di , i − 1}.

Proof idea: Apply greedy coloring to the vertices ordered with
nonincreasing degrees.

Note: Every graph has some vertex ordering for which greedy coloring
uses exactly χ(G ) colors. (Exercise 33)
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Color-critical (or k-critical) graphs

If χ(H) < χ(G ) = k for every proper subgraph H ⊂ G , then G is called
k-critical (or color-critical).
Example: Every odd cycle is a 2-critical graph, any Kn is n-critical.

Lemma

If H is a k-critical graph, then δ(H) ≥ k − 1.

Proof idea: Assume, there is a vertex with degree k − 2 or less, �nd a
contradiction.

Theorem (Szekeres-Wilf, 1968)

For any graph G ,

χ(G ) ≤ 1 + max
H⊆G

δ(H).

Proof idea: Let H ′ be a k-critical subgraph of G .

χ(G )− 1 = χ(H ′)− 1 ≤ δ(H ′) ≤ max
H⊆G

δ(H).
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Brook's Theorem

Theorem (Brooks, 1941)

If G is a connected graph other than a complete graph or an odd cycle,

then χ(G ) ≤ ∆(G ).

Sketch of the proof: Let k = ∆(G ). For k ≥ 3, trivial for k = 1, 2.

Case 1: G is not k-regular. Let deg(vn) < k , construct a spanning
tree of G using BFS starting at vn, label the vertices vi with
decreasing index i as they are added to the tree. Greedy algorithm
uses at most k colors.

Case 2: G is k-regular and has a cut-vertex: Say x is a
cut-vertex and H1 is a component of G − x and H2 = G −{x}−H1.
Color H1 ∪ {x} and H2cup{x} separately. Permute colors in both
colorings such that x has the same color in both. Done.
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Brook's Theorem

Case 3: G is k-regular and 2-connected: Assume some vertex vn
has neighbors v1 and v2, that are not adjacent, and G − {v1, v2} is
connected. (We show later, that this is always true.)

Use either BFS or DFS to �nd a spanning tree of G −{v1, v2} rooted
at vn such that vertex indices increase along the paths to the root.

Color greedily v1, v2, . . . , vn by coloring v1 and v2 the same. Done.

Claim

Every k-regular 2-connected graph has a triple as v1, v2, vn.

Proof: Since G is not complete, there are two vertices of distance 2, say
v1 and v2. We let the common neighbor of them be vn.
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Graphs with large chromatic number

Construction (Mycielski's construction)

For an input graph G with vertices {v1, . . . , vn}, a new graph G ′ is
obtained by adding vertices U = {u1, . . . , un} and another vertex w . The

edge set og G ′ contains E (G ), the edges between ui and NG (vi ) for all i .
Moreover, let N(w) = U.

Remark: This construction obtains a k + 1-chromatic graph, when the
input graph is k-chromatic. Examples: G = K2 and G = C5.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G , Mycielski's construction

produces a k + 1-chromatic triangle-free graph.

U is an independent set. So, triangles could be induced by some ui
and neighbors in N(vi ), contradiction, because G has no triangle.
We can easily extend a k-coloring of G to color U. Then, color w
with an extra color. So, at most k + 1 colors are su�cient.
Also, at least k + 1 colors are needed. To show that start with a
proper coloring of G ′ and obtain a proper coloring of G using less
colors.
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De�nitions

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G
using k colors.

A coloring is called proper if incident edges have di�erent colors.

A graph is k-edge-colorable if it has a proper k-edge coloring. The edge
chromatic number of G , χ′(G ), is the least k such that G is
k-edge-colorable.

Observation: χ′(G ) ≥ ∆(G ) for all graphs.

Example: Edge-coloring of K2n is a modeling of scheduling problem.
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Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then χ′(G ) = ∆(G ).

Note that every bipartite graph is contained in a ∆(G )-regular
bipartite graph, call this larger graph G ′.

Every regular bipartite graph has a 1-factor.

Remove 1-factors of G ′ one by one and let every one factor be the
edges of one color class.

This yields a proper ∆(G )-coloring of G ′ and G .

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were
enough, then every color class would contain exactly �ve edges. Remove
one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then χ′(G ) ≤ ∆(G ) + 1.

Thus, there are two types of graphs: the ones that have

edge-chromatic number ∆(G ) or ∆(G ) + 1.



Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then χ′(G ) = ∆(G ).

Note that every bipartite graph is contained in a ∆(G )-regular
bipartite graph, call this larger graph G ′.
Every regular bipartite graph has a 1-factor.

Remove 1-factors of G ′ one by one and let every one factor be the
edges of one color class.

This yields a proper ∆(G )-coloring of G ′ and G .

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were
enough, then every color class would contain exactly �ve edges. Remove
one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then χ′(G ) ≤ ∆(G ) + 1.

Thus, there are two types of graphs: the ones that have

edge-chromatic number ∆(G ) or ∆(G ) + 1.



Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then χ′(G ) = ∆(G ).

Note that every bipartite graph is contained in a ∆(G )-regular
bipartite graph, call this larger graph G ′.
Every regular bipartite graph has a 1-factor.

Remove 1-factors of G ′ one by one and let every one factor be the
edges of one color class.

This yields a proper ∆(G )-coloring of G ′ and G .

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were
enough, then every color class would contain exactly �ve edges. Remove
one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then χ′(G ) ≤ ∆(G ) + 1.

Thus, there are two types of graphs: the ones that have

edge-chromatic number ∆(G ) or ∆(G ) + 1.



Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then χ′(G ) = ∆(G ).

Note that every bipartite graph is contained in a ∆(G )-regular
bipartite graph, call this larger graph G ′.
Every regular bipartite graph has a 1-factor.

Remove 1-factors of G ′ one by one and let every one factor be the
edges of one color class.

This yields a proper ∆(G )-coloring of G ′ and G .

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were
enough, then every color class would contain exactly �ve edges. Remove
one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then χ′(G ) ≤ ∆(G ) + 1.

Thus, there are two types of graphs: the ones that have

edge-chromatic number ∆(G ) or ∆(G ) + 1.



Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then χ′(G ) = ∆(G ).

Note that every bipartite graph is contained in a ∆(G )-regular
bipartite graph, call this larger graph G ′.
Every regular bipartite graph has a 1-factor.

Remove 1-factors of G ′ one by one and let every one factor be the
edges of one color class.

This yields a proper ∆(G )-coloring of G ′ and G .

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were
enough, then every color class would contain exactly �ve edges. Remove
one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then χ′(G ) ≤ ∆(G ) + 1.

Thus, there are two types of graphs: the ones that have

edge-chromatic number ∆(G ) or ∆(G ) + 1.



Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then χ′(G ) = ∆(G ).

Note that every bipartite graph is contained in a ∆(G )-regular
bipartite graph, call this larger graph G ′.
Every regular bipartite graph has a 1-factor.

Remove 1-factors of G ′ one by one and let every one factor be the
edges of one color class.

This yields a proper ∆(G )-coloring of G ′ and G .

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were
enough, then every color class would contain exactly �ve edges. Remove
one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then χ′(G ) ≤ ∆(G ) + 1.

Thus, there are two types of graphs: the ones that have

edge-chromatic number ∆(G ) or ∆(G ) + 1.



Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then χ′(G ) = ∆(G ).

Note that every bipartite graph is contained in a ∆(G )-regular
bipartite graph, call this larger graph G ′.
Every regular bipartite graph has a 1-factor.

Remove 1-factors of G ′ one by one and let every one factor be the
edges of one color class.

This yields a proper ∆(G )-coloring of G ′ and G .

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were
enough, then every color class would contain exactly �ve edges. Remove
one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then χ′(G ) ≤ ∆(G ) + 1.

Thus, there are two types of graphs: the ones that have

edge-chromatic number ∆(G ) or ∆(G ) + 1.


