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Some definitions on k-connectedness

Given x,y € V(G), aset S C V(G) — {x,y} is an x, y-separator or
x, y-cut if G — S has no x, y-path.

k(x,y) (or k(x,y)): the minimum size of an x, y-cut in a graph G.
A(x,y) (or Ag(x,y)): the maximum size of a set of pairwise internally

disjoint x, y-paths in G.

For X, Y C V(G), an X, Y-path is a path having first vertex in X, last
vertex in Y, and no other vertex in X U Y.

Remark: Always, x(x,y) > A(x, y). Why? See example on page 166.
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Connectivity and Menger’s Theorem

Theorem (Menger's Theorem)

If x and y are vertices of a graph G and xy ¢ E(G), then
k(x,y) = A(x,y).

Proof:
e Clearly, k(x,y) > A(x,y). Induction on n(G) to show that
Kk(x,¥) < A(x,y).
o Base step: n(G) =2 Only x,y and xy ¢ E(G). Then,
k(x,y) = A(x,y) =0, done.
@ Inductive step: Reading exercise.

Theorem (Menger's Theorem)

A graph G is k-connected if and only if every two vertices are connected
by at least k independent paths.
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x, U-paths such that any two of these paths have only x in common.
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Fan Lemma (continued)

Sufficiency:

@ Assume G satisfies the fan condition, show that G is k-connnected.
o First, note that §(G) > k (consider an x, U-fan with U = N(x).

@ For any two vertices w and z, we find k internally disjoint
w, z-paths. Thus Menger's Thm. implies k-connectedness of G.

o Let U= N(z). Thereis a w, U-fan. By extending each of the k
w, U-paths to z, we are done.
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Theorem (Dirac, 1960)

If G is a k-connnected graph (with k > 2), and S is a set of k vertices in
G, then G has a cycle that contains all vertices in S.

Proof Idea: Induction on k

o Base step: k=2 If G is 2-connected, there are 2 internally disjoint
x, y-paths between any two vertices x and y, whose union is a cycle
containing x and y.

o Inductive step: k > 2 Given any set S in a k-connected graph G,
we find a cycle containing every vertex in S.

@ Clearly, G is also (k — 1)-connected. So, for any vertex x € S, there
is a cycle C containing S — {x}.

e Case: |V(C)| = k — 1 Because there is an x, V(C)-fan, x can be
added to C to obtain a larger cycle.
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Proof continued

Theorem (Dirac, 1960)

If G is a k-connnected graph (with k > 2), and S is a set of k vertices in
G, then G has a cycle that contains all vertices in S.

o Case: |V(C)| > k There is an x, V(C)-fan of size k. Let
Vi, Vo,. .., vk—1 be the vertices of this fan in V/(C).
V; be the segment of Cfrom v; to v;11 but not containing it.
(assuming cyclic order)

@ By pigeonhole principle (k — 1 segments=pigeonholes and k vertices
(that are not x) of the fan = pigeons) , one segment V; contains at
least two vertices.

@ Say u, v’ from the fan are in Vj. Replace u, u’-segment of C with

the x, u-path and x, u’-path of the fan to obtain a cycle containing
all of S.
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Appplications of Menger’'s Theorem: SDR

A system of distinct representatives (SDR) for a sequence of (not
necessarily distinct) sets 51, S, ..., Sy, is a sequence of distinct elements
X1,X2,...,Xm such that x; € S; for 1 < i < m.

Theorem (Ford-Fulkerson, 1958)

Families A = {A1,...,An} and B = {By, ..., By} have a common SDR
(an SDR for both) iff

|(UietAi) N (UjesB))| = || + |J| — m for each pair |,J C [m].(x)

Proof:

o Create a digraph G with vertices a;,as,...,a, and by, by, ..., by

In addition, add a vertex for each element in the sets and special
vertices s and t.

@ The edges of G consist of {sa; : A; € A} U{b;t: B; € B} and
{aix : x € A} U{xb; : x € Bj}.
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Theorem (Ford-Fulkerson, 1958)

Families A = {A1,...,An} and B = {By, ..., By} have a common SDR
(an SDR for both) iff

|(U,’€/A,') n (Uje_/Bj)‘ > |I| ar |J| — m for each pair |,J C [m](*)

@ Remark: Each s, t-path selects a member of the intersection of
some A; and some B;.
There is a set of m pairwise internally disjoint s, t-paths if and only
if there is a CSDR.

e By Menger's Thm., it is sufficient to show that (*) is equivalent to
having no s, t-cut of size less than m.

o Let R be an s, t-cut. Then, (Ujc/A;) N (UjesBj) C R.
o Let / ={a;} — Rand J = {bj} — R. Then, we have
IR = |(UierAl) N (Ujes B))| + (m —[1]) + (m — [J]),

which is always at least m because of (*).
@ See example, page 172.



