
CMP 694 Graph Theory

Hacettepe University

Lecture 6: Connectivity and Menger's
Theorem

Lecturer:
Lale Özkahya

Resources:
�Introduction to Graph Theory� by Douglas B. West



Some de�nitions on k-connectedness

Given x , y ∈ V (G ), a set S ⊆ V (G )− {x , y} is an x , y -separator or
x , y -cut if G − S has no x , y -path.

κ(x , y) (or κ(x , y)): the minimum size of an x , y -cut in a graph G .
λ(x , y) (or λG (x , y)): the maximum size of a set of pairwise internally
disjoint x , y -paths in G .

For X ,Y ⊆ V (G ), an X ,Y -path is a path having �rst vertex in X , last
vertex in Y , and no other vertex in X ∪ Y .

Remark: Always, κ(x , y) ≥ λ(x , y). Why? See example on page 166.
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Connectivity and Menger's Theorem

Theorem (Menger's Theorem)

If x and y are vertices of a graph G and xy /∈ E (G ), then
κ(x , y) = λ(x , y).

Proof:

Clearly, κ(x , y) ≥ λ(x , y). Induction on n(G ) to show that
κ(x , y) ≤ λ(x , y).

Base step: n(G ) = 2 Only x , y and xy /∈ E (G ). Then,
κ(x , y) = λ(x , y) = 0, done.

Inductive step: Reading exercise.

Theorem (Menger's Theorem)

A graph G is k-connected if and only if every two vertices are connected
by at least k independent paths.
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Appplications of Menger's Theorem

U-fan: Given a vertex x and a set U of vertices, an x ,U-fan is a set of
x ,U-paths such that any two of these paths have only x in common.

Theorem (Fan Lemma, Dirac, 1960)

A graph G is k-connected if and only if it has at least k + 1 vertices and,
for every choice of x ,U ⊂ V (G ) with |U| ≥ k , it has an x ,U-fan of size
k.

Proof:
Necessity: G , k-connected. Pick a vertex x and a set U with at least k
vertices, show an x ,U-fan exists.
Use Expansion Lemma: Add a new vertex y by connecting y to each
vertex of U with an edge, call this new graph G ′. By Exp. Lem., G ′ is
also k-connected.
Menger's thm. implies k internally disjoint x , y -paths exist in G ′.
Remove y . These paths show an x ,U-fan exists.
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Fan Lemma (continued)

Su�ciency:

Assume G satis�es the fan condition, show that G is k-connnected.

First, note that δ(G ) ≥ k (consider an x ,U-fan with U = N(x).

For any two vertices w and z , we �nd k internally disjoint
w , z-paths. Thus Menger's Thm. implies k-connectedness of G .

Let U = N(z). There is a w ,U-fan. By extending each of the k
w ,U-paths to z , we are done.
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Appplications of Menger's Theorem

Theorem (Dirac, 1960)

If G is a k-connnected graph (with k ≥ 2), and S is a set of k vertices in
G , then G has a cycle that contains all vertices in S .

Proof Idea: Induction on k

Base step: k=2 If G is 2-connected, there are 2 internally disjoint
x , y -paths between any two vertices x and y , whose union is a cycle
containing x and y .

Inductive step: k > 2 Given any set S in a k-connected graph G ,
we �nd a cycle containing every vertex in S .

Clearly, G is also (k − 1)-connected. So, for any vertex x ∈ S , there
is a cycle C containing S − {x}.
Case: |V (C )| = k − 1 Because there is an x ,V (C )-fan, x can be
added to C to obtain a larger cycle.
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Proof continued

Theorem (Dirac, 1960)

If G is a k-connnected graph (with k ≥ 2), and S is a set of k vertices in
G , then G has a cycle that contains all vertices in S .

Case: |V (C )| ≥ k There is an x ,V (C )-fan of size k . Let
v1, v2, . . . , vk−1 be the vertices of this fan in V (C ).

Vi be the segment of C from vi to vi+1 but not containing it.
(assuming cyclic order)

By pigeonhole principle (k − 1 segments=pigeonholes and k vertices
(that are not x) of the fan = pigeons) , one segment Vj contains at
least two vertices.

Say u, u′ from the fan are in Vj . Replace u, u′-segment of C with
the x , u-path and x , u′-path of the fan to obtain a cycle containing
all of S .
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Appplications of Menger's Theorem: SDR

A system of distinct representatives (SDR) for a sequence of (not
necessarily distinct) sets S1,S2, . . . ,Sm is a sequence of distinct elements
x1, x2, . . . , xm such that xi ∈ Si for 1 ≤ i ≤ m.

Theorem (Ford-Fulkerson, 1958)

Families A = {A1, . . . ,Am} and B = {B1, . . . ,Bm} have a common SDR
(an SDR for both) i�

|(∪i∈IAi ) ∩ (∪j∈JBj)| ≥ |I |+ |J| −m for each pair I , J ⊆ [m].(∗)

Proof:

Create a digraph G with vertices a1, a2, . . . , am and b1, b2, . . . , bm.
In addition, add a vertex for each element in the sets and special
vertices s and t.

The edges of G consist of {sai : Ai ∈ A} ∪ {bj t : Bj ∈ B} and
{aix : x ∈ Ai} ∪ {xbj : x ∈ Bj}.
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Remark: Each s, t-path selects a member of the intersection of
some Ai and some Bj .
There is a set of m pairwise internally disjoint s, t-paths if and only
if there is a CSDR.

By Menger's Thm., it is su�cient to show that (*) is equivalent to
having no s, t-cut of size less than m.

Let R be an s, t-cut. Then, (∪i∈IAi ) ∩ (∪j∈JBj) ⊆ R.

Let I = {ai} − R and J = {bj} − R. Then, we have

|R| ≥ |(∪i∈IAi ) ∩ (∪j∈JBj))|+ (m − |I |) + (m − |J|),

which is always at least m because of (*).

See example, page 172.
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Families A = {A1, . . . ,Am} and B = {B1, . . . ,Bm} have a common SDR
(an SDR for both) i�

|(∪i∈IAi ) ∩ (∪j∈JBj)| ≥ |I |+ |J| −m for each pair I , J ⊆ [m].(∗)

Remark: Each s, t-path selects a member of the intersection of
some Ai and some Bj .
There is a set of m pairwise internally disjoint s, t-paths if and only
if there is a CSDR.

By Menger's Thm., it is su�cient to show that (*) is equivalent to
having no s, t-cut of size less than m.

Let R be an s, t-cut. Then, (∪i∈IAi ) ∩ (∪j∈JBj) ⊆ R.

Let I = {ai} − R and J = {bj} − R. Then, we have

|R| ≥ |(∪i∈IAi ) ∩ (∪j∈JBj))|+ (m − |I |) + (m − |J|),

which is always at least m because of (*).

See example, page 172.


