CMP 694 Graph Theory Hacettepe University

Lecture 6: Connectivity and Menger's Theorem

Lecturer: Lale Özkahya

Resources: "Introduction to Graph Theory" by Douglas B. West

 $\kappa(x, y)$ (or $\kappa(x, y)$): the minimum size of an x, y-cut in a graph G. $\lambda(x, y)$ (or $\lambda_G(x, y)$): the maximum size of a set of pairwise internally disjoint x, y-paths in G.

 $\kappa(x, y)$ (or $\kappa(x, y)$): the minimum size of an x, y-cut in a graph G. $\lambda(x, y)$ (or $\lambda_G(x, y)$): the maximum size of a set of pairwise internally disjoint x, y-paths in G.

For $X, Y \subseteq V(G)$, an X, Y-path is a path having first vertex in X, last vertex in Y, and no other vertex in $X \cup Y$.

 $\kappa(x, y)$ (or $\kappa(x, y)$): the minimum size of an x, y-cut in a graph G. $\lambda(x, y)$ (or $\lambda_G(x, y)$): the maximum size of a set of pairwise internally disjoint x, y-paths in G.

For $X, Y \subseteq V(G)$, an X, Y-path is a path having first vertex in X, last vertex in Y, and no other vertex in $X \cup Y$.

Remark: Always, $\kappa(x, y) \ge \lambda(x, y)$. Why? See example on page 166.

Theorem (Menger's Theorem)

If x and y are vertices of a graph G and $xy \notin E(G)$, then $\kappa(x, y) = \lambda(x, y)$.

Proof:

• Clearly, $\kappa(x, y) \ge \lambda(x, y)$. Induction on n(G) to show that $\kappa(x, y) \le \lambda(x, y)$.

Theorem (Menger's Theorem)

If x and y are vertices of a graph G and $xy \notin E(G)$, then $\kappa(x, y) = \lambda(x, y)$.

Proof:

- Clearly, $\kappa(x, y) \ge \lambda(x, y)$. Induction on n(G) to show that $\kappa(x, y) \le \lambda(x, y)$.
- Base step: n(G) = 2 Only x, y and $xy \notin E(G)$. Then, $\kappa(x, y) = \lambda(x, y) = 0$, done.

Theorem (Menger's Theorem)

If x and y are vertices of a graph G and $xy \notin E(G)$, then $\kappa(x, y) = \lambda(x, y)$.

Proof:

- Clearly, $\kappa(x, y) \ge \lambda(x, y)$. Induction on n(G) to show that $\kappa(x, y) \le \lambda(x, y)$.
- Base step: n(G) = 2 Only x, y and $xy \notin E(G)$. Then, $\kappa(x, y) = \lambda(x, y) = 0$, done.
- Inductive step: Reading exercise.

Theorem (Menger's Theorem)

A graph G is k-connected if and only if every two vertices are connected by at least k independent paths.

Theorem (Fan Lemma, Dirac, 1960)

A graph G is k-connected if and only if it has at least k + 1 vertices and, for every choice of $x, U \subset V(G)$ with $|U| \ge k$, it has an x, U-fan of size k.

Theorem (Fan Lemma, Dirac, 1960)

A graph G is k-connected if and only if it has at least k + 1 vertices and, for every choice of $x, U \subset V(G)$ with $|U| \ge k$, it has an x, U-fan of size k.

Proof:

Necessity: G, k-connected. Pick a vertex x and a set U with at least k vertices, show an x, U-fan exists.

Theorem (Fan Lemma, Dirac, 1960)

A graph G is k-connected if and only if it has at least k + 1 vertices and, for every choice of $x, U \subset V(G)$ with $|U| \ge k$, it has an x, U-fan of size k.

Proof:

Necessity: G, k-connected. Pick a vertex x and a set U with at least k vertices, show an x, U-fan exists.

Use **Expansion Lemma**: Add a new vertex y by connecting y to each vertex of U with an edge, call this new graph G'. By Exp. Lem., G' is also k-connected.

Theorem (Fan Lemma, Dirac, 1960)

A graph G is k-connected if and only if it has at least k + 1 vertices and, for every choice of $x, U \subset V(G)$ with $|U| \ge k$, it has an x, U-fan of size k.

Proof:

Necessity: G, k-connected. Pick a vertex x and a set U with at least k vertices, show an x, U-fan exists.

Use **Expansion Lemma**: Add a new vertex y by connecting y to each vertex of U with an edge, call this new graph G'. By Exp. Lem., G' is also k-connected.

Menger's thm. implies k internally disjoint x, y-paths exist in G'. Remove y. These paths show an x, U-fan exists.

Theorem (Fan Lemma, Dirac, 1960)

A graph G is k-connected if and only if it has at least k + 1 vertices and, for every choice of $x, U \subset V(G)$ with $|U| \ge k$, it has an x, U-fan of size k.

Proof:

Necessity: G, k-connected. Pick a vertex x and a set U with at least k vertices, show an x, U-fan exists.

Use **Expansion Lemma**: Add a new vertex y by connecting y to each vertex of U with an edge, call this new graph G'. By Exp. Lem., G' is also k-connected.

Menger's thm. implies k internally disjoint x, y-paths exist in G'. Remove y. These paths show an x, U-fan exists.

• Assume G satisfies the fan condition, show that G is k-connected.

- Assume G satisfies the fan condition, show that G is k-connected.
- First, note that $\delta(G) \ge k$ (consider an x, U-fan with U = N(x).

- Assume G satisfies the fan condition, show that G is k-connnected.
- First, note that $\delta(G) \ge k$ (consider an x, U-fan with U = N(x).
- For any two vertices w and z, we find k internally disjoint w, z-paths. Thus **Menger's Thm.** implies k-connectedness of G.

- Assume G satisfies the fan condition, show that G is k-connnected.
- First, note that $\delta(G) \ge k$ (consider an x, U-fan with U = N(x).
- For any two vertices w and z, we find k internally disjoint w, z-paths. Thus Menger's Thm. implies k-connectedness of G.
- Let U = N(z). There is a w, U-fan. By extending each of the k w, U-paths to z, we are done.

If G is a k-connnected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle that contains all vertices in S.

If G is a k-connnected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle that contains all vertices in S.

Proof Idea: Induction on k

• Base step: k=2 If G is 2-connected, there are 2 internally disjoint x, y-paths between any two vertices x and y, whose union is a cycle containing x and y.

If G is a k-connnected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle that contains all vertices in S.

Proof Idea: Induction on k

- Base step: k=2 If G is 2-connected, there are 2 internally disjoint x, y-paths between any two vertices x and y, whose union is a cycle containing x and y.
- Inductive step: k > 2 Given any set S in a k-connected graph G, we find a cycle containing every vertex in S.

If G is a k-connnected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle that contains all vertices in S.

Proof Idea: Induction on k

- Base step: k=2 If G is 2-connected, there are 2 internally disjoint x, y-paths between any two vertices x and y, whose union is a cycle containing x and y.
- Inductive step: k > 2 Given any set S in a k-connected graph G, we find a cycle containing every vertex in S.
- Clearly, G is also (k − 1)-connected. So, for any vertex x ∈ S, there is a cycle C containing S − {x}.

If G is a k-connnected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle that contains all vertices in S.

Proof Idea: Induction on k

- Base step: k=2 If G is 2-connected, there are 2 internally disjoint x, y-paths between any two vertices x and y, whose union is a cycle containing x and y.
- Inductive step: k > 2 Given any set S in a k-connected graph G, we find a cycle containing every vertex in S.
- Clearly, G is also (k 1)-connected. So, for any vertex $x \in S$, there is a cycle C containing $S \{x\}$.
- Case: |V(C)| = k − 1 Because there is an x, V(C)-fan, x can be added to C to obtain a larger cycle.

If G is a k-connnected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle that contains all vertices in S.

• Case: $|V(C)| \ge k$ There is an x, V(C)-fan of size k. Let $v_1, v_2, \ldots, v_{k-1}$ be the vertices of this fan in V(C).

If G is a k-connnected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle that contains all vertices in S.

• **Case:** $|V(C)| \ge k$ There is an x, V(C)-fan of size k. Let $v_1, v_2, \ldots, v_{k-1}$ be the vertices of this fan in V(C). V_i be the segment of Cfrom v_i to v_{i+1} but not containing it. (assuming cyclic order)

If G is a k-connnected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle that contains all vertices in S.

- **Case:** $|V(C)| \ge k$ There is an x, V(C)-fan of size k. Let $v_1, v_2, \ldots, v_{k-1}$ be the vertices of this fan in V(C). V_i be the segment of Cfrom v_i to v_{i+1} but not containing it. (assuming cyclic order)
- By pigeonhole principle (k 1 segments=pigeonholes and k vertices(that are not x) of the fan = pigeons), one segment V_j contains at least two vertices.

If G is a k-connnected graph (with $k \ge 2$), and S is a set of k vertices in G, then G has a cycle that contains all vertices in S.

- **Case:** $|V(C)| \ge k$ There is an x, V(C)-fan of size k. Let $v_1, v_2, \ldots, v_{k-1}$ be the vertices of this fan in V(C). V_i be the segment of Cfrom v_i to v_{i+1} but not containing it. (assuming cyclic order)
- By pigeonhole principle (k 1 segments= pigeonholes and k vertices(that are not x) of the fan = pigeons), one segment V_j contains at least two vertices.
- Say u, u' from the fan are in V_j . Replace u, u'-segment of C with the x, u-path and x, u'-path of the fan to obtain a cycle containing all of S.

A system of distinct representatives (SDR) for a sequence of (not necessarily distinct) sets S_1, S_2, \ldots, S_m is a sequence of distinct elements x_1, x_2, \ldots, x_m such that $x_i \in S_i$ for $1 \le i \le m$.

A system of distinct representatives (SDR) for a sequence of (not necessarily distinct) sets S_1, S_2, \ldots, S_m is a sequence of distinct elements x_1, x_2, \ldots, x_m such that $x_i \in S_i$ for $1 \le i \le m$.

Theorem (Ford-Fulkerson, 1958)

Families $\mathcal{A} = \{A_1, \dots, A_m\}$ and $\mathcal{B} = \{B_1, \dots, B_m\}$ have a common SDR (an SDR for both) iff

 $|(\cup_{i\in I}A_i)\cap (\cup_{j\in J}B_j)| \geq |I| + |J| - m$ for each pair $I, J \subseteq [m].(*)$

A system of distinct representatives (SDR) for a sequence of (not necessarily distinct) sets S_1, S_2, \ldots, S_m is a sequence of distinct elements x_1, x_2, \ldots, x_m such that $x_i \in S_i$ for $1 \le i \le m$.

Theorem (Ford-Fulkerson, 1958)

Families $\mathcal{A} = \{A_1, \dots, A_m\}$ and $\mathcal{B} = \{B_1, \dots, B_m\}$ have a common SDR (an SDR for both) iff

 $|(\cup_{i\in I}A_i) \cap (\cup_{j\in J}B_j)| \ge |I| + |J| - m$ for each pair $I, J \subseteq [m].(*)$

Proof:

• Create a digraph G with vertices a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_m . In addition, add a vertex for each element in the sets and special vertices s and t.

A system of distinct representatives (SDR) for a sequence of (not necessarily distinct) sets S_1, S_2, \ldots, S_m is a sequence of distinct elements x_1, x_2, \ldots, x_m such that $x_i \in S_i$ for $1 \le i \le m$.

Theorem (Ford-Fulkerson, 1958)

Families $\mathcal{A} = \{A_1, \dots, A_m\}$ and $\mathcal{B} = \{B_1, \dots, B_m\}$ have a common SDR (an SDR for both) iff

 $|(\cup_{i\in I}A_i) \cap (\cup_{j\in J}B_j)| \ge |I| + |J| - m$ for each pair $I, J \subseteq [m].(*)$

Proof:

- Create a digraph G with vertices a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_m . In addition, add a vertex for each element in the sets and special vertices s and t.
- The edges of G consist of $\{sa_i : A_i \in A\} \cup \{b_jt : B_j \in B\}$ and $\{a_ix : x \in A_i\} \cup \{xb_j : x \in B_j\}.$

Theorem (Ford-Fulkerson, 1958)

Families $\mathcal{A} = \{A_1, \dots, A_m\}$ and $\mathcal{B} = \{B_1, \dots, B_m\}$ have a common SDR (an SDR for both) iff

 $|(\cup_{i\in I}A_i)\cap (\cup_{j\in J}B_j)|\geq |I|+|J|-m$ for each pair $I,J\subseteq [m].(*)$

 Remark: Each s, t-path selects a member of the intersection of some A_i and some B_j. There is a set of m pairwise internally disjoint s, t-paths if and only if there is a CSDR.

Theorem (Ford-Fulkerson, 1958)

Families $A = \{A_1, \dots, A_m\}$ and $B = \{B_1, \dots, B_m\}$ have a common SDR (an SDR for both) iff

 $|(\cup_{i\in I}A_i)\cap (\cup_{j\in J}B_j)| \ge |I| + |J| - m$ for each pair $I, J \subseteq [m].(*)$

- Remark: Each s, t-path selects a member of the intersection of some A_i and some B_j. There is a set of m pairwise internally disjoint s, t-paths if and only if there is a CSDR.
- By Menger's Thm., it is sufficient to show that (*) is equivalent to having no *s*, *t*-cut of size less than *m*.

Theorem (Ford-Fulkerson, 1958)

Families $A = \{A_1, \dots, A_m\}$ and $B = \{B_1, \dots, B_m\}$ have a common SDR (an SDR for both) iff

 $|(\cup_{i\in I}A_i)\cap (\cup_{j\in J}B_j)| \ge |I| + |J| - m$ for each pair $I, J \subseteq [m].(*)$

- Remark: Each s, t-path selects a member of the intersection of some A_i and some B_j. There is a set of m pairwise internally disjoint s, t-paths if and only if there is a CSDR.
- By Menger's Thm., it is sufficient to show that (*) is equivalent to having no *s*, *t*-cut of size less than *m*.
- Let R be an s, t-cut. Then, $(\cup_{i\in I}A_i)\cap (\cup_{j\in J}B_j)\subseteq R$.

Theorem (Ford-Fulkerson, 1958)

Families $\mathcal{A} = \{A_1, \dots, A_m\}$ and $\mathcal{B} = \{B_1, \dots, B_m\}$ have a common SDR (an SDR for both) iff

 $|(\cup_{i\in I}A_i)\cap (\cup_{j\in J}B_j)|\geq |I|+|J|-m$ for each pair $I,J\subseteq [m].(*)$

- Remark: Each s, t-path selects a member of the intersection of some A_i and some B_j. There is a set of m pairwise internally disjoint s, t-paths if and only if there is a CSDR.
- By Menger's Thm., it is sufficient to show that (*) is equivalent to having no *s*, *t*-cut of size less than *m*.
- Let R be an s, t-cut. Then, $(\cup_{i \in I} A_i) \cap (\cup_{j \in J} B_j) \subseteq R$.
- Let $I = \{a_i\} R$ and $J = \{b_j\} R$. Then, we have

 $|R| \ge |(\cup_{i \in I} A_i) \cap (\cup_{j \in J} B_j))| + (m - |I|) + (m - |J|),$

which is always at least m because of (*).

Theorem (Ford-Fulkerson, 1958)

Families $\mathcal{A} = \{A_1, \dots, A_m\}$ and $\mathcal{B} = \{B_1, \dots, B_m\}$ have a common SDR (an SDR for both) iff

 $|(\cup_{i\in I}A_i)\cap (\cup_{j\in J}B_j)| \geq |I| + |J| - m$ for each pair $I, J \subseteq [m].(*)$

- Remark: Each s, t-path selects a member of the intersection of some A_i and some B_j. There is a set of m pairwise internally disjoint s, t-paths if and only if there is a CSDR.
- By Menger's Thm., it is sufficient to show that (*) is equivalent to having no *s*, *t*-cut of size less than *m*.
- Let R be an s, t-cut. Then, $(\cup_{i \in I} A_i) \cap (\cup_{j \in J} B_j) \subseteq R$.
- Let $I = \{a_i\} R$ and $J = \{b_j\} R$. Then, we have

 $|R| \ge |(\cup_{i \in I} A_i) \cap (\cup_{j \in J} B_j))| + (m - |I|) + (m - |J|),$

which is always at least m because of (*).

• See example, page 172.