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Matching and Perfect Matching

A matching is a set of independent edges in a graph. A matching is

maximal if it cannot be made larger by adding any more edges.
maximum if it is maximal and the largest possible matching in a
graph
perfect if it contains all vertices in the graph (only possible, if vertex
number is even).



Alternating Path and Augmenting Path in Bipartite
(A,B)-graph

A path in G which starts in A at an unmatched vertex and then contains,
alternately, edges from E \M and from M, is an alternating path with
respect to M.

An alternating path P that ends in an unmatched vertex of B is called an
augmenting path, because we use it to turn M into a larger matching.

Figure: Augmenting the matching M by the alternating path P
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Matchings in Bipartite Graphs

A subset U ⊂ V in a graph G = (V ,E ) is called a vertex cover if every
edge of G is incident with a vertex in U.

Theorem (König, 1931): The maximum size of a matching in a bipartite
graph G is equal to the minimum order of a vertex cover of its edges.

Proof:

If M is a maximum matching, the minimum vertex cover cannot have one
vertex that covers two edges of M.

Therefore, the order of minimum vertex cover is at least |M|.

Next: Show that a minimum vertex cover has also at most |M| vertices.
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Matchings in Bipartite Graphs

Claim: The order of a minimum vertex cover is at most the size of a
maximum matching M.

From every edge in a maximum matching, choose one of its
endpoints: its end in B if some alternating path ends in that vertex,
otherwise its end in A.
Call this vertex set U.

Figure: The vertex cover U

Let ab be an edge; show that either a or b lies in U.
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Hall’s Condition

A matching M in a bipartite (A,B)-graph is said to saturate A if each
vertex in A is contained in some edge of M.

Hall’s Condition: The condition that |N(S)| ≥ |S | for all S ⊂ A is called
the Hall’s condition for finding a matching that saturates A.

Theorem (Hall, 1935): G contains a matching that saturates A if and
only if |N(S)| ≥ |S | for all S ⊂ A.
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First proof of Hall’s Theorem

Proof by induction:

Apply induction on |A|. For |A| = 1, clearly the theorem holds.
Let |A| ≥ 2 and assume that Hall’s condition is sufficient of a
mathing that saturates A when |A| is smaller.

Case 1: |N(S)| ≥ |S |+ 1 for every non-empty proper S ⊂ A.

pick an edge ab, let G ′ := G − {a, b} with a ∈ A, b ∈ B. Then

|NG ′(S)| ≥ |NG (S)| − 1 ≥ |S |

for every S ⊂ A \ {a}.
G ′ contains a matching that saturates A \ {a} by inductive
hypothesis, this matching together with ab is a matching of G .
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First proof of Hall’s Theorem

Proof by induction (continues):

Case 2: There exists a proper subset A′ ( A with |N(A′)| = |A′|, let
B ′ = N(A′).

G ′ := G [A′ ∪ B ′] contains a matching saturating A′ (Ind. Hypo.)
G − G ′ also satisfies Hall’s condition. Why?
(Consider NG (S ∪ A′) if S ⊂ A− A′ does not satisfy Hall’s
condition). G − G ′ contains a matching saturating A \ A′. Done.
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Second proof of Hall’s Theorem

Proof by extremality:
Let H be a spanning subgraph of G that satisfies the Hall’s condition for
A and is edge-minimal.

Observation: dH(a) ≥ 1 for every a ∈ A by Hall’s condition.

Claim: dH(a) = 1 for every a ∈ A. (By this claim, we know that the
edges of H form a matching saturating A.)
Proof by contradiction:
See next slide.
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Second proof of Hall’s Theorem

Assume that a has distinct neighbors b1 and b2 in H.
By definition of H, the graphs H − ab1 and H − ab2 violate Hall’s
condition.
For i = 1, 2, there is a set Ai ⊂ A containing a such that |Ai | > |Bi |
for Bi := NH−abi (Ai ).
Since b1 ∈ B2 and b2 ∈ B1, we obtain

|NH(A1 ∩ A2 \ {a}| ≤ |B1 ∩ B2|
= |B1|+ |B2| − |B1 ∪ B2|
= |B1|+ |B2| − |NH(A1 ∪ A2)|
≤ |A1| − 1+ |A2| − 1− |A1 ∪ A2|
= |A1 ∩ A2 \ {a}| − 1.

Since H violates Hall’s condition, this contradicts with the initial
assumption.
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Matchings in Bipartite Graphs

Theorem (König, 1931): The maximum size of a matching in a bipartite
(X ,Y )-graph is equal to the minimum order of a vertex cover of its edges.

Proof (using Hall’s theorem):

Next: Show that a minimum vertex cover Q has also at most |M|
vertices.

Partition Q into the sets R and T , where R = Q ∩ X and
T = Q ∩ Y .
Let H = G [R ∪ (Y − T )] and H ′ = G [T ∪ (X − R)].
Use Hall’s theorem to show that H has a matching saturating R and
H ′ has a matching saturating T .
To do that, we need to show that Hall’s condition holds for these
graphs. (Observe that there is no edge between the sets Y − T and
X −R. If Hall’s condition does not hold for some S , we could obtain
a smaller vertex cover, contradiction.)
Since H and H ′ are vertex-disjoint, these the union of these two
mathings is a matching of G . Done.
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