
BIL694-Lecture 6-7: Counting

Lecturer: Lale Özkahya

Resources for the presentation:

�Extremal Combinatorics with Applications in Computer Science� by S. Jukna
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Theorem (Binomial Theorem)

Let n be a positive integer. Then for all x and y ,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k .

Proof.

Multiply (x + y) . . . (x + y) n times and consider how many times xk and
yk will appear in each term for k = 0, 1, . . . , n.

(n)k = n(n − 1) . . . (n − k + 1) is the number of ordered strings with k
elements chosen from n di�erent elements.
Another way to count the number of these strings is

(
n
k

)
k!,

since there are
(
n
k

)
ways to pick k elements and k! ways to order these

elements. Thus,

(n)k =

(
n

k

)
k! =

n!

(n − k)!k!
k! =

n!

(n − k)!
.



Combinatorial Equalities and Proving Them Combinatorially

∑n
k=0

(
n
k

)
= 2n.

Proof: Plug in x = y = 1 in the binomial theorem.

(
n

n−k
)

=
(
n
k

)
Mathematical proof: n!

(n−(n−k))!(n−k)! = n!
(n−k)!k! .

Combinatorial proof: Each k-subset is uniquely determined by its
complement in an n-set.
Therefore, the number of ways to choose a k-set from n distinct
elements is the same as the number of ways to choose an
(n − k)-set from n distinct elements.

Pascal Triangle(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
.

Mathematical proof: Exercise

Combinatorial proof: Exercise



How fast does
(
n
k

)
grow with k?

Proposition (n
k

)k
≤
(
n

k

)
and

k∑
i=0

(
n

i

)
≤
(en
k

)k
.

Lower Bound:(
n
k

)k
= n

k ·
n
k · · ·

n
k ≤

n
k
n−1
k−1 · · ·

n−k+1

1
=
(
n
k

)
.

Upper Bound:

Recall that et = 1 + t + t2

2! + t3

3! + . . . for any real number t. Thus

et < 1 + t.

By using the binomial theorem and above and for t = k/n, we obtain

k∑
i=0

(
n

i

)
≤

k∑
i=0

(
n

i

)
t i

tk
=

(1 + t)n

tk
≤
(en
k

)k
.

Note: Tighter asymptotic (for su�ciently large n) estimates can be
obtained by using the Stirling Formula:

n! =
(n
e

)n√
2πneαn , where 1/(12n + 1) < αn < 1/(12n).



Exercises, for more check Jukna's book

In how many ways can we distribute k balls to n boxes so that each
box has at most one ball?

Prove combinatorially that(
n

k

)
=

n

k

(
n − 1

k − 1

)
.

Hint: Count in two ways the number of pairs (x ,M), where M is a
k-element subset of {1, . . . , n} and x ∈ M.

Prove combinatorially that

n∑
k=1

k

(
n

k

)
= n2n−1.

Hint: Count in two ways the number of pairs (x ,M) with
x ∈ M ⊂ {1, . . . , n}.
Prove the above statement mathematically.

Use Pascal Triangle to show that

r∑
i=0

(
n + i − 1

i

)
=

(
n + r

r

)
.
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Proposition

The number of integer solutions to the equation

x1 + · · ·+ xn = r

under the condition that xi ≥ 0 for all i = 1, . . . , n, is
(
n+r−1

r

)
.

Exercise

Let k ≥ 2n. In how many ways can we distribute k sweets to n children,

if each child is supposed to get at least 2 of them?
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Partitions

De�nition

A partition of n objects is a collection of its mutually disjoint subsets,

called parts, whose union gives the whole set.

Let S(n; k1, k2, . . . , kn) denote the number of all partitions of n distinct

objects with ki i-element parts, which implies k1 + 2k2 + · · ·+ nkn = n.

Proposition

S(n; k1, k2, . . . , kn) =
n!

k1! . . . kn!(1!)k1 . . . (n!)kn
.

Exercise: 1.23 (Jukna)
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Double Counting

The double counting principle states the following fact: if the elements of
a set are counted in two di�erent ways, then the answers are obviously
the same.
Example:

Let M be an m × n matrix with entries 0 and 1. Then the total number
of 1's added over the columns is the same as the total number of 1's
added over the rows.

Example (Handshaking Lemma)

At a party, the number of guests who shake hands an odd number of

times is even.

Reading exercise: Read the proof.

Proposition

Let F be a family of subsets of some set X . Then,∑
x∈X

d(x) =
∑
A∈F

|A|.

Proof: Consider the incidence matrix with rows representing elements of
X and columns representing the members of F .



Theorem (Euler, 1736)

In every graph, the sum of the degrees of its vertices is two times the

number of its edges, and hence, is even.
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The Averaging Principle

The Averaging Principle says that every set of numbers must contain a
number at least as large as the average and a number at least as small as
the average.
Observation: Every graph on n vertices with fewer than n − 1 edges is
disconnected.
Proof: Induction on n.
For n = 1, trivial.
By averaging, there is a vertex with degree less than 2.



A real valued function f (x) is convex if

f (λa + (1− λ)b) ≤ λf (a) + (1− λ)f (b),

for any 0 ≤ lambda ≤ 1. (The graph of a convex function in the book.)
Geometrical meaning: If we draw a line ` through the points (a, f (a))
and (b, f (b)), then the graph of the curve f (z) must lie below of `(z) for
z ∈ [a, b].

Theorem (Jensen's Inequality)

If 0 ≤ λi ≤ 1,
∑n

i=1
λi = 1 and f is convex, then

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λi f (xi )

Corollary (Cauchy-Schwarz Inequality)

If a1, . . . , an are non-negative, then

1

n

(
n∑

i=1

ai

)2

≤
n∑

i=1

a2i .

Proof: Let f (x) = x2 and λi = 1/n for each i in Jensen's inequality.



Geometric Mean vs. Arithmetic Mean

Corollary

If a1, . . . , an are non-negative, then

(Πn
i=1

ai )
1/n ≤ 1

n

n∑
i=1

ai .

Thus, the arithmetic mean is at least the geometric mean.

Proof: Let f (x) = 2x and λi = 1/n, xi = log
2
ai for each i in Jensen's

inequality.
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The Inclusion-Exclusion Principle

In general, given n subsets A1, . . . ,An of a set X , we want to calculate
|A1 ∪ · · · ∪ An|, the number of elements in this union.

Proposition (Inclusion-Exclusion Principle)

Let A1, . . . ,An be subsets of X = A∅. Then the number of elements of X
in the complement of A1 ∪ · · · ∪ An is∑

I⊂{1,...,n}

(−1)|I ||AI |, where AI := ∩i∈IAi .

Proof:

The sum is a linear combination of cardinalities (sizes) of sets AI

with coe��cients +1 and -1.

Suppose that an element x ∈ X is in none of the Ai 's, then the only
time x is counted is when I = ∅.
Otherwise, x ∈ AI precisely when I ⊂ J. Thus the contrribution of x
is ∑

I⊂J

(−1)|I | =

|J|∑
i=0

(
|J|
i

)
(−1)i = (1− 1)|J| = 0.



Proposition

Let A1, . . . ,An be subsets of X = A∅. Then,

|A1 ∪ · · · ∪ An| =
∑

∅6=I⊂{1,...,n}

(−1)|I |+1|AI |, where AI := ∩i∈IAi .

Proof: Subtract the number in the previous proposition from |X |.

A derangement is a permutation which �xes none of its elements.

There are exactly n! permutations. How many of them are
derangements?

Proposition

The number of derangements of {1, . . . , n} is

n∑
i=0

(−1)i
(
n

i

)
(n − i)! = n!

n∑
i=0

(−1)i

i !
.

Proof: Apply inclusion-exclusion principle.


