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» Graph G(V,E) = A set V of vertices or nodes
= Connected by a set E of edges or links
= Elements of E are unordered pairs (u,v), u,v € V

> In figure = Vertices are V ={1,2,3,4,5,6}
= Edges E = {(1,2),(1,5),(2,3),(3,4),...
(3,5),(3,6).(4,5), (4,6)}

» Often we will say graph G has order N, := |V, and size N, := |E]



From networks to graphs

» Networks are complex systems of inter-connected components

» Graphs are mathematical representations of these systems

= Formal language we use to talk about networks

» Components: nodes, vertices
> Inter-connections: links, edges

» Systems: networks, graphs

G(V,E)



Vertices and edges in networks

Network Vertex Edge

Internet Computer/router  Cable or wireless link
Metabolic network Metabolite Metabolic reaction

WwWWw Web page Hyperlink

Food web Species Predation

Gene-regulatory network  Gene Regulation of expression
Friendship network Person Friendship or acquaintance
Power grid Substation Transmission line

Affiliation network
Protein interaction
Citation network
Neural network

Person and club
Protein
Article/patent
Neuron

Membership
Physical interaction
Citation

Synapse




Simple and multi-graphs

» In general, graphs may have self-loops and multi-edges
=- A graph with either is called a multi-graph

» Mostly work with simple graphs, with no self-loops or multi-edges
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Directed graphs

» In directed graphs, elements of E are ordered pairs (u,v), u,v € V
= Means (u, v) distinct from (v, u)

= Directed edges are called arcs

» Directed graphs often called digraphs
= By convention arc (u, v) points to v
= If both {(u, v),(v,u)} C E, the arcs are said to be mutual

» Ex: who-calls-whom phone networks, Twitter follower networks



Subgraphs

» Consider a given graph G(V, E)

» Def: Graph G’(V’, E’) is an induced subgraph of G if V' C V and
E’' C E is the collection of edges in G among that subset of vertices

» Ex: Graph induced by V' = {1,4,5}
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Weighted graphs

» Oftentimes one labels vertices, edges or both with numerical values

= Such graphs are called weighted graphs

» Useful in modeling are e.g., Markov chain transition diagrams
» Ex: Single server queuing system (M/M/1 queue)
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» Labels could correspond to measurements of network processes

» Ex: Node is infected or not with influenza, IP traffic carried by a link



Typical network representations

Network Graph representation

WWW Directed multi-graph (with loops), unweighted
Facebook friendships ~ Undirected, unweighted

Citation network Directed, unweighted, acyclic

Collaboration network  Undirected, unweighted

Mobile phone calls Directed, weighted

Protein interaction Undirected multi-graph (with loops), unweighted

» Note that multi-edges are often encoded as edge weights (counts)



Adjacency

» Useful to develop a language to discuss the connectivity of a graph

» A simple and local notion is that of adjacency
= Vertices u, v € V are said adjacent if joined by an edge in E
= Edges e1, e; € E are adjacent if they share an endpoint in V
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> In figure = Vertices 1 and 5 are adjacent; 2 and 4 are not
= Edge (1,2) is adjacent to (1,5), but not to (4,6)



» An edge (u,v) is incident with the vertices u and v

» Def: The degree d, of vertex v is its number of incident edges

= Degree sequence arranges degrees in non-decreasing order
3

3
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> In figure = Vertex degrees shown in red, e.g., di =2 and ds = 3
= Graph's degree sequence is 2,2,2,3,3,4

> High-degree vertices likely influential, central, prominent.



Properties and observations about degrees

» Degree values range from 0 to N, — 1

» The sum of the degree sequence is twice the size of the graph
Ny
> d, =2|E| = 2N,
v=1

= The number of vertices with odd degree is even

» In digraphs, we have vertex in-degree d";" and out-degree dg"
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> In figure = Vertex in-degrees shown in red, out-degrees in blue
= For example, di" = 0, d?"t = 2 and di" = 3,d¢"t = 1
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Movement in a graph

» Def: A walk of length / from vy to v; is an alternating sequence
{vo,€1,v1,...,Vi_1,€, v}, where ¢ is incident with v;_1, v;

» A trail is a walk without repeated edges
> A path is a walk without repeated nodes (hence, also a trail)
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» A walk or trail is closed when vy = v;. A closed trail is a circuit

» A cycle is a closed walk with no repeated nodes except vy = v,

> All these notions generalize naturally to directed graphs



Connectivity

» Vertex v is reachable from v if there exists a u — v walk

» Def: Graph is connected if every vertex is reachable from every other

» |f bridge edges are removed, the graph becomes disconnected



Connected components

» Def: A component is a maximally connected subgraph

= Maximal means adding a vertex will ruin connectivity
o 0
O 0
» In figure = Components are {1,2,5,7}, {3,6} and {4}

= Subgraph {3,4,6} not connected, {1,2,5} not maximal

» Disconnected graphs have 2 or more components

= Largest component often called giant component



Giant connected components

> Large real-world networks typically exhibit one giant component

» Ex: romantic relationships in a US high school [Bearman et al'04]
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» Q: Why do we expect to find a single giant component?
> A: Well, it only takes one edge to merge two giant components



Connectivity of directed graphs

» Connectivity is more subtle with directed graphs. Two notions

» Def: Digraph is strongly connected if for every pair u,v € V, u is
reachable from v (via a directed walk) and vice versa

» Def: Digraph is weakly connected if connected after disregarding arc
directions, i.e., the underlying undirected graph is connected

» Above graph is weakly connected but not strongly connected

= Strong connectivity obviously implies weak connectivity



How well connected nodes are?

» Q: Which node is the most connected?
» A: Node rankings to measure website relevance, social influence

» There are two important connectivity indicators
= How many links point to a node (outgoing links irrelevant)

= How important are the links that point to a node

> |dea exploited by Google's PageRank® to rank webpages
... by social scientists to study trust & reputation in social networks

... by ISI to rank scientific papers, journals ...
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Complete graphs and cliques

» A complete graph K|, of order n has all possible edges

VAN

K, K, K, Ky

» Q: What is the size of K,?
n(n—1)

> A: Number of edges in K, = Number of vertex pairs = (5) = =5~

» Of interest in network analysis are cliques, i.e., complete subgraphs

= Extreme notions of cohesive subgroups, communities



Regular graphs

» A d-regular graph has vertices with equal degree d

» Naturally, the complete graph K, is (n — 1)-regular
= Cycles are 2-regular (sub) graphs

» Regular graphs arise frequently in e.g.,
> Physics and chemistry in the study of crystal structures
» Geo-spatial settings as pixel adjacency models in image processing
» Opinion formation, information cycles as regular subgraphs



Trees and directed acyclic graphs

» A tree is a connected acyclic graph. An acyclic graph is forest

» Ex: river network, information cascades in Twitter, citation network

Tree Directed DAG
tree
o [ ]
® [ ]

» A directed tree is a digraph whose underlying undirected graph is a tree

= Root is only vertex with paths to all other vertices
» Vertex terminology: parent, children, ancestor, descendant, leaf

» The underlying graph of a directed acyclic graph (DAG) is not a tree

= DAGs have a near-tree structure, also useful for algorithms



Bipartite graphs

> A graph G(V, E) is called bipartite when
= V can be partitioned in two disjoint sets, say V; and V5; and
= Each edge in E has one endpoint in V4, the other in V),

v1 v2 v3¥v4~v5

V5

» Useful to represent e.g., membership or affiliation networks
= Nodes in V; could be people, nodes in V5, clubs
= Induced graph G(V4, E;) joins members of same club



Planar graphs

» A graph G(V,E) is called planar if it can be drawn in the plane so
that no two of its edges cross each other

» Planar graphs can be drawn in the plane using straight lines only

» Useful to represent or map networks with a spatial component
= Planar graphs are rare
= Some mapping tools minimize edge crossings
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Adjacency matrix

v

Algebraic graph theory deals with matrix representations of graphs

v

Q: How can we capture the connectivity of G(V, E) in a matrix?

v

A: Binary, symmetric adjacency matrix A € {0,1}M>*Nv "with entries

AL i) eE
Y71 0, otherwise

= Note that vertices are indexed with integers 1,..., N,

= Binary and symmetric A for unweighted and undirected graph

v

In words, A is one for those entries whose row-column indices denote
vertices in V joined by an edge in E, and is zero otherwise



Adjacency matrix examples

» Examples for undirected graphs and digraphs

1 1
4 3 4 3
2 2

0101 01 0 1
1 00 1 0 00O
Ac=f o001 A=]000 0
1110 0110

> If the graph is weighted, store the (i, /) weight instead of 1



Adjacency matrix properties

» Adjacency matrix useful to store graph structure.

= Also, operations on A yield useful information about G

v

. . . N,
Degrees: Row-wise sums give vertex degrees, i.e., ijvl Aj =d

v

For digraphs A is not symmetric and row-, colum-wise sums differ

Ny N,

__ Aout . Ain
Y Aj=d Y Aj=d]
j=1 i=1

v

Walks: Let A’ denote the r-th power of A, with entries Af.j’)

= Then A{) yields the number of i — j walks of length r in G
Corollary: tr(A%)/2 = N, and tr(A%)/6 = #A in G

v

v

Spectrum: G is d-regular if and only if 1 is an eigenvector of A, i.e.,

Al =d1



Incidence matrix

> A graph can be also represented by its N, x N, incidence matrix B
= B is in general not a square matrix, unless N, = N,

» For undirected graphs, the entries of B are

B. — 1, if vertex i incident to edge j
Y10, otherwise

» For digraphs we also encode the direction of the arc, namely

1, ifedgejis (k,i)
Bj=< -1, ifedge is (i,k)
0, otherwise



Incidence matrix examples

» Examples for undirected graphs and digraphs

1 1
e1 67

4 % 3 4 & 3
26 2 28 €2

1 010 1 -1 0 -1 0 1
11000 1 1 0 0 0
Boa=1 0001 1| B=| 0 0o 0 1 -1
01 110 0 -1 1 -1 0

> If the graph is weighted, modify nonzero entries accordingly



Graph Laplacian

> Vertex degrees often stored in the diagonal matrix D, where D;; = d;

2 000 !
0 200

D= 0 010 4 3
0 0 0 3 2

» The N, x N, symmetric matrix L := D — A is called graph Laplacian
2 -1 0 -1

d: ifi=j

: -1 2 0 -1

Lij=q -1 fGHeE L= g ¢ 1
0, otherwise

-1 -1 -1 3



Laplacian matrix properties

v

Smoothness: For any vector x € RV» of “vertex values”, one has

x'Lx = Z (xi — x;)?

(ij)EE

which can be minimized to enforce smoothness of functions on G

v

Positive semi-definiteness: Follows since xT Lx > 0 for all x € RV

v

Rank deficiency: Since L1 =0, L is rank deficient

v

Spectrum and connectivity: The smallest eigenvalue A; of L is O

> |If the second-smallest eigenvalue \» # 0, then G is connected
> If L has n zero eigenvalues, G has n connected components
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Graph data structures and algorithms

» Q: How can we store and analyze a graph G using a computer?

-,

L7 Graph data structures AN
and algorithms

Purely mathematical —_—) Practical tools for
objects network analytics

-,
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» Data structures: efficient storage and manipulation of a graph
» Algorithms: scalable computational methods for graph analytics

= Contributions in this area primarily due to computer science



Adjacency matrix as a data structure

» Q: How can we represent and store a graph G in a computer?
» A: The N, x N, adjacency matrix A is a natural choice

A1 fl)eEE
Y71 0, otherwise

= O = O
= O O
= O O O

[ R
N
W

2

» Matrices (arrays) are basic data objects in software environments
= Naive memory requirement is O(N2)
= May be undesirable for large, sparse graphs



Networks are sparse graphs

» Most real-world networks are sparse, meaning
N, (N, — 1) 1 &
v v . 7
—————= or equivalentl d::—g d, <N, -1
quiv y N, 2 v v

» Figures from the study by Leskovec et al '09 are eloquent

Network dataset Order N,  Avg. degree d
WWW (Stanford-Berkeley) 319,717 9.65
Social network (LinkedIn) 6,946,668 8.87
Communication (MSN IM) 242,720,596 11.1
Collaboration (DBLP) 317,080 6.62
Roads (California) 1,957,027 2.82
Proteins (S. Cerevisiae) 1,870 2.39
» Graph density p := % = 27:,V is another useful metric



Adjacency and edge lists

> An adjacency-list representation of graph G is an array of size N,
= The i-th array element is a list of the vertices adjacent to i

Ll = {24} ’

La[2] = {1’ 4}

La[3] = {4} 4 3
La[4] = {17273} 2

Le[l] = {172}
Le[2] - {174}
Le[3] = {274}
Le[4] = {374}

> In either case, the memory requirement is O(N,)



Graph algorithms and complexity

» Numerous interesting questions may be asked about a given graph

» For few simple ones, lookup in data structures suffices

Q1: Are vertices u and v linked by an edge?
Q2: What is the degree of vertex u?

» Some others require more work. Still can tackle them efficiently

Q1: What is the shortest path between vertices u and v?
Q2: How many connected components does the graph have?
Q3: Is a given digraph acyclic?

» Unfortunately, in some cases there is likely no efficient algorithm
Q1: What is the maximal clique in a given graph?

» Algorithmic complexity key in the analysis of modern network data



Testing for connectivity

» Goal: verify connectivity of a graph based on its adjacency list

> ldea: start from vertex s, explore the graph, mark vertices you visit

Output : List M of marked vertices in the component
Input : Graph G (e.g., adjacency list)

Input : Starting vertex s
L:={s}h M:={s};
while L # 0 do

choose u € L;
if 3 (u,v) € E such that v ¢ M then
choose (u, v) with v of smallest index;
L:=LU{v};, M:=MU{v},
else
| L:=L\{u};

end

end



Graph exploration example

» Below we indicate the chosen and marked nodes. Initialize s = 2

L Mark
27 2
{21}
{2,1,5}
{2,1,5.6}
{1,5.6}
{1,5,6,4}
{5.6,4}
{5.4}
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» Exploration takes 2N, steps. Each node is added and removed once



Breadth-first search

» Choices made arbitrarily in the exploration algorithm. Variants?
> Breadth-first search (BFS): choose for u the first element of L
Output : List M of marked vertices in the component

Input : Graph G (e.g., adjacency list)
Input : Starting vertex s

L:={s}; M :={s};
while L # () do
u = first(L);

if 3 (u,v) € E such that v ¢ M then
choose (u, v) with v of smallest index;
L:=LU{v};, M:=MU{v}
else
L=\ {u);

end

end



BFS example

» Below we indicate the chosen and marked nodes. Initialize s = 2

L Mark
{2} 2
{2,1} 1
{2,1,5} 5
{15}

{1,5,4} 4
{1546} 6
{5,4,6}

{4.6}

{4,6,3} 3
{6,3}

{3}

{3,7} 7
{3,7,8} 8
{78}

{8}

{3

> The algorithm builds a wider tree (breadth first)



Depth-first search

> Depth-first search (DFS): choose for u the last element of L

Output : List M of marked vertices in the component
Input : Graph G (e.g., adjacency list)
Input : Starting vertex s

L:={s}h M:={s};

while L # 0 do
u = last(L);
if 3 (u,v) € E such that v ¢ M then
choose (u, v) with v of smallest index;
L:=LU{v};, M:=MU{v},
else
| L:=L\{u};

end

end



DFS example

» Below we indicate the chosen and marked nodes. Initialize s = 2

L Mark
{2} 2
{21}
{2,1,4}
{2,1,4,3}
{2,1,4,3,7}
{2,1,4,3}
{2,1,4,3,8}
{2,1,4,3}
{2,1,4}
{2,1,4,6}
{2,1,4,6,5}
{2,1,4,6}
{2,1,4}
{21}

{2}

{3
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> The algorithm builds longer paths (depth first)



Distances in a graph

» Recall a path {v, e1,v1,...,vi_1, €, v} has length |
= Edges weights {w.}, length of the walk is we, + ... + w,
» Def: The distance between vertices u and v is the length of the

shortest u — v path. Oftentimes referred to as geodesic distance
= In the absence of a u — v path, the distance is co

= The diameter of a graph is the value of the largest distance

v

Q: What are efficient algorithms to compute distances in a graph?
A: BFS (for unit weights) and Dijkstra’s algorithm

v



Computing distances with BFS

» Use BFS and keep track of path lengths during the exploration

> Increment distance by 1 every time a vertex is marked

Output : Vector d of distances from reference vertex
Input : Graph G (e.g., adjacency list)
Input : Reference vertex s

L:={s}; M:={s}; d(s) =0;

while L # () do

u = first(L);

if 3 (u,v) € E such that v ¢ M then
choose (u, v) with v of smallest index;
L:=LU{v} M:=MU{v}
d(v):=d(u)+1

else

L=\ ()

end

end



Example: Distances in a social network

» BFS tree output for your friendship network

distance 1 your friends

distance 2 friends of friends

friends of friends
of friends

distance 3

all nodes, not already discovered, that have an
edge to some node in the previous layer



Glossary

vV V. Y V. VY VYV VvV VvV VY

(Di) Graph

Arc

(Induced) Subgraph
Incidence

Degree sequence

Walk, trail and path
Connected graph

Giant connected component
Strongly connected digraph
Clique

Tree

vV V. vV YV Y VYV VvV VYV VvV VY

Bipartite graph

Directed acyclic graph (DAG)
Adjacency matrix

Graph Laplacian

Adjacency and edge lists
Sparse graph

Graph density

Breadth-first search
Depth-first search (DFS)
Geodesic distance (BFS)

Diameter
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