NAME:
SOLUTIONS

STUDENT ID: \qquad

BBM462 Final Exam
June, 12, 2023, 15:00-16:30

Question:	1	2	3	4	5	Total
Points:	20	20	18	20	22	100
Score:						

1. (20 points) Measure the similarity of the graphs below using the Weisfeiler-Lehman kernel using 4 iterations. Show all your work to receive full credit.

2:1,111
3:2,222
4: 3,333
5:4,444

$\phi\left(G_{1}\right)=[8,8,8,8,8]$
$\phi\left(G_{2}\right)=\phi\left(G_{1}\right)$

$\operatorname{Ker}\left(G_{1}, G_{2}\right)=\varnothing\left(G_{1}\right) \cdot \phi\left(G_{2}\right)$
2. (20 points) Calculate the degree, closeness and betweenness centralities of all nodes in the graph P_{6} and $K_{2,3}$ (complete bipartite graph with one part with 2 nodes and the other part with 3 nodes).

3. (a) (12 points) In the following directed graph, find all strongly connected components (SCC) using the algorithmic idea introduced in course notes.
(b) (6 points) Merge the nodes in each SCC to a single supernode keeping the remaining edges as they are. Show that this new directed graph is acyclic (DAG) by obtaining a topological ordering of the vertices. (Note: A directed graph has a topological ordering if and only if it is a DAG.)
a)

ides. 1:

$$
\begin{aligned}
& \text { ifer. 1: } \\
& \text { res. reachable by } A:\{C, B, E, F, H, G, A\} \\
& \text { vas. reaching } A:\{B, C, P, A\} \\
& \text { intersection: }\{C, B, A\} \text { SC. }
\end{aligned}
$$

iter.2:
V. xs. reachable by $D($ remaining $):\{E, F, H, G, D\}$

$$
\begin{aligned}
& \text { vas. reachdole by } D \text { - } / \text { - : }\{D\} \\
& \text { res. reaching } D \text { intersection: }\{D\} \text { SCC. } 2
\end{aligned}
$$

liter. 3 :
wars. reachable by $E:\{E, F, G, H\}$
reaching $E:\{E, F, G, H\}$ vas. reaching $E:\{E, F, G, H\}$
intersection: $\{E, F, G, H\}$ Sch. 3
b)

Page 3
4. (20 points) Answer the following questions and show all your work.
(a) Execute the first three iterations of the power method on the digraph (directed graph) below. (The first three iterations are already in the lecture slide for you to check your understanding.)
(b) For $\epsilon=0.1$, do you observe convergence after the first three iterations.

a)

$$
\begin{aligned}
& r_{1}=M \cdot r_{0}=\left[\begin{array}{l}
\left(\frac{1}{3}+\frac{1}{2}\right) \\
\left(1+\frac{1}{2}\right) \\
\left(\frac{1}{2}+\frac{1}{3}\right) \\
\frac{1}{2} \\
\frac{1}{3}
\end{array}\right]=\frac{1}{5}\left[\begin{array}{l}
5 / 6 \\
3 / 2 \\
5 / 6 \\
1 / 2 \\
1 / 3
\end{array}\right] \\
& r_{2}=M \cdot r_{1}=\left[\begin{array}{l}
\frac{1}{3} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{3} \\
1 \cdot \frac{5}{6}+\frac{1}{2} \cdot \frac{1}{3} \\
\frac{1}{2} \cdot \frac{3}{2}+\frac{1}{3} \cdot \frac{1}{2} \\
\frac{1}{2} \cdot \frac{3}{2} \\
\frac{1}{3} \cdot \frac{1}{2}
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{1} \\
\frac{11}{12} \\
\frac{3}{4} \\
\frac{1}{6}
\end{array}\right]
\end{aligned}
$$

5. (a) (10 points) Find the GDV (Graphlet Degree Vector) for each vertex in the sample graph for all graphlets with 3 nodes. (You can make use of symmetry.)
(b) (12 points) Calculate $\operatorname{cut}(A, B), \operatorname{vol}(A), \operatorname{vol}(B)$, and $\phi(A, B)$ (conductance) for the graph below, with 1) $A=\{1,2,3\}$ and $B=\{4,5,6\}$ and 2) $A=\{1,5,6\}$ and $B=\{2,3,4\}$.

c

b) 1) $\operatorname{vol}(A)=3+3+3=9, \operatorname{vol}(B)=3+3+3=9$

$$
\begin{aligned}
& \operatorname{cut}(A, B)=5 \\
& D(A, B)=\frac{5}{9}
\end{aligned}
$$

c) $1+1+2=4 \begin{array}{lll}4 & 1+2+104 & 4 \\ \text { d) } 1 & 1 & 1\end{array}$
$\frac{5}{3}$
2
4
1
2) $\operatorname{vol}(A)=3 \cdot 3=9$, vel $(B)=3 \cdot 3=9$

$$
\begin{aligned}
& \operatorname{cut}(A, B)=3 \\
& \varnothing(A, B)=\frac{3}{9}
\end{aligned}
$$

