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Special	  purpose	  machines?	  
•  Different	  DFA	  for	  different	  languages	  (duh)	  
•  Different	  TMs	  for	  different	  languages,	  
funcOons.	  

•  Early	  computer	  programming	  was	  no	  different	  



Von	  Neumann	  Architecture	  

•  stored-‐program	  computer	  
– programs	  can	  be	  data!	  

– program-‐as-‐data	  determines	  
subcircuits	  to	  employ	  

•  fetch-‐decode-‐execute	  cycle	  
•  hence,	  one	  computer	  can	  
behave	  like	  any	  

hap://idiomzero.blogspot.com/2010/07/8-‐anecdotes-‐about-‐john-‐von-‐neumann.html	  



Original	  Idea	  was	  due	  to	  Turing	  

“I	  know	  that	  in	  or	  about	  1943	  or	  '44	  von	  Neumann	  was	  well	  
aware	  of	  the	  fundamental	  importance	  of	  Turing's	  paper	  
of	  1936	  ...	  Von	  Neumann	  introduced	  me	  to	  that	  paper	  
and	  at	  his	  urging	  I	  studied	  it	  with	  care.	  Many	  people	  have	  
acclaimed	  von	  Neumann	  as	  the	  "father	  of	  the	  
computer"	  (in	  a	  modern	  sense	  of	  the	  term)	  but	  I	  am	  sure	  
that	  he	  would	  never	  have	  made	  that	  mistake	  himself.	  He	  
might	  well	  be	  called	  the	  midwife,	  perhaps,	  but	  he	  firmly	  
emphasized	  to	  me,	  and	  to	  others	  I	  am	  sure,	  that	  the	  
fundamental	  concep,on	  is	  owing	  to	  Turing—	  in	  so	  far	  as	  
not	  an,cipated	  by	  Babbage	  ...	  “	  
	   	   	   	   	   	   	   	  -‐	  Stan	  Frankel	  –	  Los	  Alamos	  



Universal	  TM	  

•  A	  single	  TM	  Mu	  that	  can	  compute	  anything	  
computable!	  

•  Takes	  as	  input	  
–  the	  descrip(on	  of	  some	  other	  TM	  M	  
– data	  w	  for	  M	  to	  run	  on	  

•  Outputs	  
–  the	  results	  of	  running	  M(w)	  

Need	  to	  make	  precise	  what	  the	  descrip,on	  of	  a	  TM	  is	  



Coding	  of	  TMs	  
•  Show	  how	  to	  represent	  every	  TM	  as	  a	  natural	  
number	  

•  Lemma:	  	  If	  L	  over	  alphabet	  {0,1}	  is	  accepted	  by	  
some	  TM	  M,	  then	  there	  is	  a	  one-‐tape	  TM	  M’	  that	  
accepts	  L,	  such	  that	  
–  Γ	  =	  {0,1,B}	  
–  states	  numbered	  1,	  ...,	  k	  
–  q1	  is	  the	  unique	  start	  state	  
–  q2	  is	  the	  unique	  halt/accept	  state	  
–  q3	  is	  the	  unique	  halt/reject	  state	  

•  So,	  to	  represent	  a	  TM,	  we	  need	  only	  list	  its	  set	  of	  
transiOons	  –	  everything	  else	  is	  implicit	  by	  above	  



Lis,ng	  Transi,on	  

•  Use	  the	  following	  order:	  
	  δ(q1,0),	  δ(q1,1),	  δ(q1,B),	  δ(q2,0),	  δ(q2,1),	  δ(q2,B),...	  

	  	  ...	  δ(qk,0),	  δ(qk,1),	  δ(qk,B).	  

•  Use	  the	  following	  encoding:	  
	  111	  	  t1	  	  11	  	  t2	  	  11	  	  t3	  	  11	  	  ...	  	  	  11	  	  t3k	  	  	  111	  

where	  ti	  is	  the	  encoding	  of	  transiOon	  i	  as	  given	  on	  
the	  next	  slide.	  	  



Encoding	  a	  transi,on	  

Recall	  transiOon	  looks	  like	  	  δ(q,a)	  =	  (p,	  b,	  L)	  

So,	  encode	  as	  	  
<state>	  1	  <input>	  1	  <new	  state>	  1	  <new-‐symbol>	  1	  <direcOon>	  
where	  	  	  

•  state	  qi	  	  represented	  by	  0i	  
•  0,	  1,	  B	  represented	  by	  	  0,	  00,	  000	  
•  L,	  R,	  S	  represented	  by	  0,	  00,	  000	  

δ(q3,1)	  =	  (q4,	  0,	  R)	  represented	  by	  	  	  0001001000010100	  	  

q3	   1	   q4	   0	   R	  



Typical	  TM	  code:	  

•  Begins,	  ends	  with	  111	  
•  TransiOons	  separated	  by	  11	  
•  Fields	  within	  transiOon	  separated	  by	  1	  
•  Individual	  fields	  represented	  by	  0s	  

11101010000100100110100100000101011.....11.......11.......111	  	  



TMs	  are	  (binary)	  numbers	  

•  Every	  TM	  is	  encoded	  by	  a	  unique	  element	  of	  N	  
•  ConvenOon:	  	  elements	  of	  N	  that	  do	  not	  
correspond	  to	  any	  TM	  encoding	  represent	  the	  
“null	  TM”	  that	  accepts	  nothing.	  

•  Thus,	  every	  TM	  is	  a	  number,	  and	  vice	  versa	  

•  Let	  <M>	  mean	  the	  number	  that	  encodes	  M	  

•  Conversely,	  let	  Mn	  be	  the	  TM	  with	  encoding	  n.	  



Universal	  TM	  Mu	  

Construct	  a	  TM	  	  Mu	  such	  that	  
	  L(Mu)	  =	  {	  <M>	  #	  w	  	  |	  M	  accepts	  w}	  	  

Thus,	  Mu	  	  is	  a	  stored-‐program	  computer.	  
It	  reads	  a	  program	  <M>	  and	  executes	  it	  on	  data	  w	  

Mu	  simulates	  the	  run	  of	  M	  on	  w	  

A	  	  single	  TM	  captures	  the	  no,on	  of	  “computable”	  !!	  



How	  Mu	  works	  

3	  tapes	  
•  Tape	  1:	  	  holds	  input	  M	  and	  w;	  never	  changes	  

•  Tape	  2:	  	  simulates	  M’s	  single	  tape	  

•  Tape	  3:	  	  holds	  M’s	  current	  state	  

1	   1	   1	   t1	   1	   1	   t2	   1	   1	   ...	   t3k	   1	   1	   1	   #	   w	  

Input	  M	   Input	  w	  



Universal	  TM	  	  Mu	  

Phase	  1:	  	  Check	  if	  <M>	  is	  a	  valid	  TM	  on	  tape	  1	  
– No	  four	  1’s	  in	  a	  row	  
– Three	  iniOal,	  ending	  1’s	  
– substring	  110i10j1	  doesn’t	  appear	  twice	  
– appropriate	  number	  of	  0’s	  between	  1’s	  in	  
transiOon	  codes:	  	  11000010100000100001...	  
	  (0000	  does	  not	  encode	  a	  0,1,or	  B	  to	  write)	  

– could	  check	  that	  transiOons	  are	  in	  right	  order,	  and	  
form	  a	  complete	  set	  (but	  not	  necessary)	  

– etc.	  
If	  not	  valid,	  then	  halt	  and	  reject	  



Phase	  2:	  	  Set	  up	  
– copy	  w	  to	  tape	  2,	  with	  head	  scanning	  first	  symbol	  

– write	  0	  on	  tape	  3	  indicaOng	  M	  is	  in	  start	  state	  q1	  

11101010000100100110100100000101011......111	  #	  100110	  

$100110	  

$0	  

Tape	  1	  

Tape	  2	  

Current	  contents	  of	  M’s	  tape	  

Current	  state	  of	  M	  

Tape	  3	  

Code	  for	  M	  

If	  at	  any	  Ome,	  Tape	  3	  holds	  00	  	  (or	  000),	  then	  halt	  and	  accept	  (or	  reject)	  



Phase	  3:	  	  Repeatedly	  simulate	  steps	  of	  M	  

111010100001001001101001000001010011......111	  #	  100110	  

$100110	  

$0	  

Tape	  1	  

Tape	  2	  

Current	  contents	  of	  M’s	  tape	  

Current	  state	  of	  M	  	  

Tape	  3	  

Code	  for	  M	  

If	  tape	  3	  holds	  0i	  and	  tape	  2	  is	  scanning	  1,	  then	  search	  for	  
substring	  	  110i1001	  on	  tape	  1	  	  

copy	  new	  state	  00000	  to	  tape	  3	  

write	  a	  0	  under	  tape	  2’s	  head	  

move	  tape	  2	  head	  to	  the	  right	  
what	  to	  do	  next	  

Where	  in	  code	  is	  next	  transiOon?	  



Phase	  3:	  	  ARer	  the	  single	  move	  

111010100001001001101001000001010011......111	  #	  100110	  

$000110	  

$00000	  

Tape	  1	  

Tape	  2	  

Current	  contents	  of	  M’s	  tape	  

Current	  state	  of	  M	  	  

Tape	  3	  

Code	  for	  M	  
copy	  new	  state	  00000	  to	  tape	  3	  

write	  a	  0	  under	  tape	  2’s	  head	  

move	  tape	  2	  head	  to	  the	  right	  

Check	  if	  00	  or	  000	  is	  on	  tape	  3;	  	  if	  so,	  halt	  and	  accept	  or	  reject	  

Otherwise,	  simulate	  the	  next	  move	  by	  searching	  for	  paaern.	  
	  In	  this	  example,	  the	  next	  paaern	  =	  	  1100000101	  



Towards	  “real”	  computers:	  RAMs	  

Random	  Access	  Machine:	  
• 	   finite	  number	  of	  arithmeOc	  registers	  

• 	   infinite	  number	  of	  memory	  locaOons	  

• 	   instrucOon	  set	  (next	  page)	  
• 	   program	  instrucOons	  wriaen	  in	  conOnuous	  
block	  of	  memory	  starOng	  at	  locaOon	  1	  and	  all	  
registers	  set	  to	  0.	  



RAM	  instruc,on	  set	  
Instruc(on	   Meaning	  

Add	  X,	  Y	   Add	  contents	  of	  register	  X	  and	  Y,	  and	  place	  
result	  in	  register	  X	  

LOADC	  X,	  num	   Place	  constant	  num	  in	  register	  X	  

LOAD	  X,	  M	   Put	  contents	  of	  memory	  loc	  M	  into	  register	  X	  

LOADI	  X,	  M	   Indirect	  addressing:	  	  put	  value(value(M))	  into	  
register	  X	  

STORE	  X,	  M	   Copy	  contents	  of	  reg	  X	  into	  mem	  locaOon	  M	  

JUMP	  X,	  M	   If	  register	  X	  =	  0,	  then	  next	  instrucOon	  is	  at	  
memory	  locaOon	  M	  (otherwise,	  next	  
instrucOon	  is	  the	  one	  following	  the	  current	  
one,	  as	  usual)	  

HALT	   Halt	  (duh)	  



TMs	  can	  simulate	  RAMs	  	  

•  Can	  write	  a	  “TM-‐interpreter”	  of	  RAM	  code	  
Thus,	  no	  more	  TM	  programming.	  

•  Actual	  simulaOon	  has	  low	  overhead	  (though	  
memory	  is	  not	  random-‐access).	  



TM	  tapes	  
•  InstrucOon-‐locaOon	  tape	  
– stores	  memory	  locaOon	  where	  next	  instrucOon	  is	  

–  iniOally	  contains	  only	  “1”	  
•  Register	  tape	  
– stores	  register	  numbers	  and	  their	  contents,	  as	  
follows:	  	  	  #	  <reg-‐num>	  #	  <contents>	  #	  ..	  etc.	  

– Example:	  	  suppose	  R1	  has	  11,	  and	  R4	  has	  101,	  and	  
all	  other	  registers	  are	  empty.	  	  	  Then	  register	  tape:	  

$	   #	   1	   ,	   1	   1	   #	   1	   0	   0	   ,	   1	   0	   1	   #	   .	   .	   .	  



TM	  tapes	  
•  Memory	  tape	  –	  similar	  to	  register	  tape,	  but	  
can	  hold	  numbers,	  OR	  instrucOons:	  

numbers:	  	  	  #	  <mem-‐locaOon>	  ,	  <value>	  #	  ...	  

instrucOons:	  	  	  	  

	  example:	  mem	  locaOon	  101	  holds	  ADD	  3,6	  

#	   1	   0	   1	   ,	   A
D
D	  

,	   1	   1	   ,	   1	   1	   0	   #	   .	   .	   .	  

single	  symbol	  

• 	  	  5	  work	  tapes	  



TM	  setup	  

•  Blank	  register	  tape	  
•  Memory	  tape	  holds	  RAM	  program,	  starOng	  at	  
memory	  locaOon	  1.	  	  No	  other	  data	  stored.	  	  

•  1	  on	  instrucOon-‐locaOon	  tape	  



TM	  step	  overview	  

(many	  TM	  steps	  for	  each	  RAM	  step)	  

•  Read	  instrucOon-‐locaOon	  tape	  
•  search	  memory	  tape	  for	  the	  instrucOon	  

•  execute	  the	  instrucOon,	  changing	  register	  and	  
memory	  tapes	  as	  needed	  

•  update	  the	  locaOon-‐instrucOon	  tape	  

In	  other	  words,	  it	  goes	  through	  a	  fetch-‐decode-‐execute	  cycle	  



Example	  

•  Suppose	  instrucOon	  locaOon	  tape	  holds	  only:	  
$	   1	   0	   1	  

•  Scan	  memory	  tape,	  looking	  for	  “#	  1	  0	  1	  ,”	  
Suppose	  it	  finds	  

.	   .	   #	   1	   0	   1 ,	   A
D
D	  

,	   1	   1	   ,	   1	   1	   0	   #	  

•  It	  finds	  “ADD”	  following	  “,”	  and	  switches	  to	  
special	  state	  qadd	  	  to	  handle	  the	  addiOon	  



Example	  (cont.)	  

#	   1	   0	   1 ,	   A
D
D	  

,	   1	   1	   ,	   1	   1	   0	   #	  

•  first	  argument	  is	  in	  register	  11	  so	  search	  
register	  tape	  for:	  

qadd	  

#	   1	   1	   ,	   <bitstring>	  

•  then	  copy	  <bitstring>	  to	  worktape	  1	  
•  similarly,	  search	  for,	  find,	  place	  value	  of	  
register	  110	  onto	  worktape	  2	  



Example	  (cont.)	  

•  Now	  go	  to	  subrouOne	  to	  add	  worktape	  1	  +	  
worktape	  2,	  place	  results	  on	  worktape	  3.	  

•  Result	  must	  go	  back	  into	  register	  11	  

•  Search	  register	  tape	  again	  for	  	  
#	   1	   1	   ,	   <bitstring>	  

•  Replace	  <bitstring>	  with	  new	  value	  copied	  
from	  worktape	  3,	  shiRing	  as	  necessary	  

•  Add	  1	  to	  instrucOon-‐locaOon	  tape	  



RAM	  simula,on	  
•  MANY	  details	  leR	  out	  
•  Other	  types	  of	  instrucOons	  are	  similar	  

•  Number	  of	  steps	  to	  simulate	  RAM?	  

•  Delicate	  issue....	  does	  RAM	  actually	  have	  
constant-‐Ome	  access	  to	  infinite	  memory?	  

•  Can	  show	  (beyond	  this	  course)	  for	  
“reasonable”	  Ome	  model	  on	  a	  RAM,	  if	  T(n)	  
steps	  are	  required,	  then	  on	  a	  TM,	  only	  T(n)2	  

steps.	  	  (T(n)3	  if	  RAM	  has	  mult.	  and	  div.)	  



Church-‐Turing	  thesis	  
•  TMs	  capture	  noOon	  of	  “computable”	  
•  Evidence	  
–  RAM	  computer	  
–  general	  recursive	  funcOons	  (Gödel	  &	  Herbrand)	  

•  constant/projecOon/successor/composiOon/recursion	  

–  	  λ-‐calculus	  (Church)	  for	  defining	  funcOons	  (CS	  421)	  
–  general	  string-‐rewriOng-‐system	  

•  unrestricted	  grammar,	  producOons	  of	  form	  α	  	  β	  for	  any	  α	  
and	  β	  

–  aaempts	  to	  extend	  TMs	  

All	  give	  you	  exactly	  the	  TM-‐computable	  func,ons	  



Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373
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Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.
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Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}
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Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?
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Storing Multiple Tapes

0 1 1 t

1 0 t t
finite-state

control

Multi-tape TM M

(1, ·, 0, ∗) (0, ∗, 1, ·) (t, ·, 1, ·) t

finite-state
control

1-tape equivalent single(M)

Store in cell i contents of cell i of all tapes.

“Mark” head position
of tape with ∗.
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Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.
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Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.

2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.
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Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.

Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})
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Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM.

So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi )

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}
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Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.
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Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Computation

cε = q0w

c1 · · · ci · · · · · · cr

· · · · · · cij · · · cr1 · · · crr

· · · · · ·

If r = maxq,X |δ(q,X )| then the runs of M can be organized
as an r -branching tree.

ci1i2···in is the configuration of M after n-steps, where choice i1
is taken in step 1, i2 in step 2, and so on.

Input w is accepted iff ∃ accepting configuration in tree.
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Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.
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Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M

(note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices
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Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Execution of det(M)

1 Initially: Input tape contains w , simulation tape and choice
tape are blank

2 Copy contents of input tape onto simulation tape
3 Simulate M using simulation tape as its (only) tape

1 At the next step of M, if state is q, simulation tape head reads
X , and choice tape head reads i , then simulate the ith
possibility in δ(q,X ); if i is not a valid choice, then goto step 4

2 After changing state, simulation tape contents, and head
position on simulation tape, move choice tape’s head to the
right. If Tape 3 is now scanning t, then goto step 4

3 If M accepts then accept and halt, else goto step 3(1) to
simulate the next step of M.

4 Write the lexicographically next choice sequence on choice
tape, erase everything on simulation tape and goto step 2.
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Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Deterministic Simulation
In a nutshell

det(M) simulates M over and over again, for different
sequences, and for different number of steps.

If M accepts w then there is a sequence of choices that will
lead to acceptance. det(M) will eventually have this sequence
on choice tape, and then its simulation M will accept.

If M does not accept w then no sequence of choices leads to
acceptance. det(M) will therefore never halt!
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Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.
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