
BBM401-Reading: Variants of Turing Machines

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs373/fa2010/lectures
https://courses.engr.illinois.edu/cs498374/lectures.html

Special	 purpose	 machines?	
•  Different	 DFA	 for	 different	 languages	 (duh)	
•  Different	 TMs	 for	 different	 languages,	
funcOons.	

•  Early	 computer	 programming	 was	 no	 different	

Von	 Neumann	 Architecture	

•  stored-‐program	 computer	
– programs	 can	 be	 data!	

– program-‐as-‐data	 determines	
subcircuits	 to	 employ	

•  fetch-‐decode-‐execute	 cycle	
•  hence,	 one	 computer	 can	
behave	 like	 any	

hap://idiomzero.blogspot.com/2010/07/8-‐anecdotes-‐about-‐john-‐von-‐neumann.html	

Original	 Idea	 was	 due	 to	 Turing	

“I	 know	 that	 in	 or	 about	 1943	 or	 '44	 von	 Neumann	 was	 well	
aware	 of	 the	 fundamental	 importance	 of	 Turing's	 paper	
of	 1936	 ...	 Von	 Neumann	 introduced	 me	 to	 that	 paper	
and	 at	 his	 urging	 I	 studied	 it	 with	 care.	 Many	 people	 have	
acclaimed	 von	 Neumann	 as	 the	 "father	 of	 the	
computer"	 (in	 a	 modern	 sense	 of	 the	 term)	 but	 I	 am	 sure	
that	 he	 would	 never	 have	 made	 that	 mistake	 himself.	 He	
might	 well	 be	 called	 the	 midwife,	 perhaps,	 but	 he	 firmly	
emphasized	 to	 me,	 and	 to	 others	 I	 am	 sure,	 that	 the	
fundamental	 concep,on	 is	 owing	 to	 Turing—	 in	 so	 far	 as	
not	 an,cipated	 by	 Babbage	 ...	 “	
	 	 	 	 	 	 	 	 -‐	 Stan	 Frankel	 –	 Los	 Alamos	

Universal	 TM	

•  A	 single	 TM	 Mu	 that	 can	 compute	 anything	
computable!	

•  Takes	 as	 input	
–  the	 descrip(on	 of	 some	 other	 TM	 M	
– data	 w	 for	 M	 to	 run	 on	

•  Outputs	
–  the	 results	 of	 running	 M(w)	

Need	 to	 make	 precise	 what	 the	 descrip,on	 of	 a	 TM	 is	

Coding	 of	 TMs	
•  Show	 how	 to	 represent	 every	 TM	 as	 a	 natural	
number	

•  Lemma:	 	 If	 L	 over	 alphabet	 {0,1}	 is	 accepted	 by	
some	 TM	 M,	 then	 there	 is	 a	 one-‐tape	 TM	 M’	 that	
accepts	 L,	 such	 that	
–  Γ	 =	 {0,1,B}	
–  states	 numbered	 1,	 ...,	 k	
–  q1	 is	 the	 unique	 start	 state	
–  q2	 is	 the	 unique	 halt/accept	 state	
–  q3	 is	 the	 unique	 halt/reject	 state	

•  So,	 to	 represent	 a	 TM,	 we	 need	 only	 list	 its	 set	 of	
transiOons	 –	 everything	 else	 is	 implicit	 by	 above	

Lis,ng	 Transi,on	

•  Use	 the	 following	 order:	
	 δ(q1,0),	 δ(q1,1),	 δ(q1,B),	 δ(q2,0),	 δ(q2,1),	 δ(q2,B),...	

	 	 ...	 δ(qk,0),	 δ(qk,1),	 δ(qk,B).	

•  Use	 the	 following	 encoding:	
	 111	 	 t1	 	 11	 	 t2	 	 11	 	 t3	 	 11	 	 ...	 	 	 11	 	 t3k	 	 	 111	

where	 ti	 is	 the	 encoding	 of	 transiOon	 i	 as	 given	 on	
the	 next	 slide.	 	

Encoding	 a	 transi,on	

Recall	 transiOon	 looks	 like	 	 δ(q,a)	 =	 (p,	 b,	 L)	

So,	 encode	 as	 	
<state>	 1	 <input>	 1	 <new	 state>	 1	 <new-‐symbol>	 1	 <direcOon>	
where	 	 	

•  state	 qi	 	 represented	 by	 0i	
•  0,	 1,	 B	 represented	 by	 	 0,	 00,	 000	
•  L,	 R,	 S	 represented	 by	 0,	 00,	 000	

δ(q3,1)	 =	 (q4,	 0,	 R)	 represented	 by	 	 	 0001001000010100	 	

q3	 1	 q4	 0	 R	

Typical	 TM	 code:	

•  Begins,	 ends	 with	 111	
•  TransiOons	 separated	 by	 11	
•  Fields	 within	 transiOon	 separated	 by	 1	
•  Individual	 fields	 represented	 by	 0s	

11101010000100100110100100000101011.....11.......11.......111	 	

TMs	 are	 (binary)	 numbers	

•  Every	 TM	 is	 encoded	 by	 a	 unique	 element	 of	 N	
•  ConvenOon:	 	 elements	 of	 N	 that	 do	 not	
correspond	 to	 any	 TM	 encoding	 represent	 the	
“null	 TM”	 that	 accepts	 nothing.	

•  Thus,	 every	 TM	 is	 a	 number,	 and	 vice	 versa	

•  Let	 <M>	 mean	 the	 number	 that	 encodes	 M	

•  Conversely,	 let	 Mn	 be	 the	 TM	 with	 encoding	 n.	

Universal	 TM	 Mu	

Construct	 a	 TM	 	 Mu	 such	 that	
	 L(Mu)	 =	 {	 <M>	 #	 w	 	 |	 M	 accepts	 w}	 	

Thus,	 Mu	 	 is	 a	 stored-‐program	 computer.	
It	 reads	 a	 program	 <M>	 and	 executes	 it	 on	 data	 w	

Mu	 simulates	 the	 run	 of	 M	 on	 w	

A	 	 single	 TM	 captures	 the	 no,on	 of	 “computable”	 !!	

How	 Mu	 works	

3	 tapes	
•  Tape	 1:	 	 holds	 input	 M	 and	 w;	 never	 changes	

•  Tape	 2:	 	 simulates	 M’s	 single	 tape	

•  Tape	 3:	 	 holds	 M’s	 current	 state	

1	 1	 1	 t1	 1	 1	 t2	 1	 1	 ...	 t3k	 1	 1	 1	 #	 w	

Input	 M	 Input	 w	

Universal	 TM	 	 Mu	

Phase	 1:	 	 Check	 if	 <M>	 is	 a	 valid	 TM	 on	 tape	 1	
– No	 four	 1’s	 in	 a	 row	
– Three	 iniOal,	 ending	 1’s	
– substring	 110i10j1	 doesn’t	 appear	 twice	
– appropriate	 number	 of	 0’s	 between	 1’s	 in	
transiOon	 codes:	 	 11000010100000100001...	
	 (0000	 does	 not	 encode	 a	 0,1,or	 B	 to	 write)	

– could	 check	 that	 transiOons	 are	 in	 right	 order,	 and	
form	 a	 complete	 set	 (but	 not	 necessary)	

– etc.	
If	 not	 valid,	 then	 halt	 and	 reject	

Phase	 2:	 	 Set	 up	
– copy	 w	 to	 tape	 2,	 with	 head	 scanning	 first	 symbol	

– write	 0	 on	 tape	 3	 indicaOng	 M	 is	 in	 start	 state	 q1	

11101010000100100110100100000101011......111	 #	 100110	

$100110	

$0	

Tape	 1	

Tape	 2	

Current	 contents	 of	 M’s	 tape	

Current	 state	 of	 M	

Tape	 3	

Code	 for	 M	

If	 at	 any	 Ome,	 Tape	 3	 holds	 00	 	 (or	 000),	 then	 halt	 and	 accept	 (or	 reject)	

Phase	 3:	 	 Repeatedly	 simulate	 steps	 of	 M	

111010100001001001101001000001010011......111	 #	 100110	

$100110	

$0	

Tape	 1	

Tape	 2	

Current	 contents	 of	 M’s	 tape	

Current	 state	 of	 M	 	

Tape	 3	

Code	 for	 M	

If	 tape	 3	 holds	 0i	 and	 tape	 2	 is	 scanning	 1,	 then	 search	 for	
substring	 	 110i1001	 on	 tape	 1	 	

copy	 new	 state	 00000	 to	 tape	 3	

write	 a	 0	 under	 tape	 2’s	 head	

move	 tape	 2	 head	 to	 the	 right	
what	 to	 do	 next	

Where	 in	 code	 is	 next	 transiOon?	

Phase	 3:	 	 ARer	 the	 single	 move	

111010100001001001101001000001010011......111	 #	 100110	

$000110	

$00000	

Tape	 1	

Tape	 2	

Current	 contents	 of	 M’s	 tape	

Current	 state	 of	 M	 	

Tape	 3	

Code	 for	 M	
copy	 new	 state	 00000	 to	 tape	 3	

write	 a	 0	 under	 tape	 2’s	 head	

move	 tape	 2	 head	 to	 the	 right	

Check	 if	 00	 or	 000	 is	 on	 tape	 3;	 	 if	 so,	 halt	 and	 accept	 or	 reject	

Otherwise,	 simulate	 the	 next	 move	 by	 searching	 for	 paaern.	
	 In	 this	 example,	 the	 next	 paaern	 =	 	 1100000101	

Towards	 “real”	 computers:	 RAMs	

Random	 Access	 Machine:	
• 	 finite	 number	 of	 arithmeOc	 registers	

• 	 infinite	 number	 of	 memory	 locaOons	

• 	 instrucOon	 set	 (next	 page)	
• 	 program	 instrucOons	 wriaen	 in	 conOnuous	
block	 of	 memory	 starOng	 at	 locaOon	 1	 and	 all	
registers	 set	 to	 0.	

RAM	 instruc,on	 set	
Instruc(on	 Meaning	

Add	 X,	 Y	 Add	 contents	 of	 register	 X	 and	 Y,	 and	 place	
result	 in	 register	 X	

LOADC	 X,	 num	 Place	 constant	 num	 in	 register	 X	

LOAD	 X,	 M	 Put	 contents	 of	 memory	 loc	 M	 into	 register	 X	

LOADI	 X,	 M	 Indirect	 addressing:	 	 put	 value(value(M))	 into	
register	 X	

STORE	 X,	 M	 Copy	 contents	 of	 reg	 X	 into	 mem	 locaOon	 M	

JUMP	 X,	 M	 If	 register	 X	 =	 0,	 then	 next	 instrucOon	 is	 at	
memory	 locaOon	 M	 (otherwise,	 next	
instrucOon	 is	 the	 one	 following	 the	 current	
one,	 as	 usual)	

HALT	 Halt	 (duh)	

TMs	 can	 simulate	 RAMs	 	

•  Can	 write	 a	 “TM-‐interpreter”	 of	 RAM	 code	
Thus,	 no	 more	 TM	 programming.	

•  Actual	 simulaOon	 has	 low	 overhead	 (though	
memory	 is	 not	 random-‐access).	

TM	 tapes	
•  InstrucOon-‐locaOon	 tape	
– stores	 memory	 locaOon	 where	 next	 instrucOon	 is	

–  iniOally	 contains	 only	 “1”	
•  Register	 tape	
– stores	 register	 numbers	 and	 their	 contents,	 as	
follows:	 	 	 #	 <reg-‐num>	 #	 <contents>	 #	 ..	 etc.	

– Example:	 	 suppose	 R1	 has	 11,	 and	 R4	 has	 101,	 and	
all	 other	 registers	 are	 empty.	 	 	 Then	 register	 tape:	

$	 #	 1	 ,	 1	 1	 #	 1	 0	 0	 ,	 1	 0	 1	 #	 .	 .	 .	

TM	 tapes	
•  Memory	 tape	 –	 similar	 to	 register	 tape,	 but	
can	 hold	 numbers,	 OR	 instrucOons:	

numbers:	 	 	 #	 <mem-‐locaOon>	 ,	 <value>	 #	 ...	

instrucOons:	 	 	 	

	 example:	 mem	 locaOon	 101	 holds	 ADD	 3,6	

#	 1	 0	 1	 ,	 A
D
D	

,	 1	 1	 ,	 1	 1	 0	 #	 .	 .	 .	

single	 symbol	

• 	 	 5	 work	 tapes	

TM	 setup	

•  Blank	 register	 tape	
•  Memory	 tape	 holds	 RAM	 program,	 starOng	 at	
memory	 locaOon	 1.	 	 No	 other	 data	 stored.	 	

•  1	 on	 instrucOon-‐locaOon	 tape	

TM	 step	 overview	

(many	 TM	 steps	 for	 each	 RAM	 step)	

•  Read	 instrucOon-‐locaOon	 tape	
•  search	 memory	 tape	 for	 the	 instrucOon	

•  execute	 the	 instrucOon,	 changing	 register	 and	
memory	 tapes	 as	 needed	

•  update	 the	 locaOon-‐instrucOon	 tape	

In	 other	 words,	 it	 goes	 through	 a	 fetch-‐decode-‐execute	 cycle	

Example	

•  Suppose	 instrucOon	 locaOon	 tape	 holds	 only:	
$	 1	 0	 1	

•  Scan	 memory	 tape,	 looking	 for	 “#	 1	 0	 1	 ,”	
Suppose	 it	 finds	

.	 .	 #	 1	 0	 1 ,	 A
D
D	

,	 1	 1	 ,	 1	 1	 0	 #	

•  It	 finds	 “ADD”	 following	 “,”	 and	 switches	 to	
special	 state	 qadd	 	 to	 handle	 the	 addiOon	

Example	 (cont.)	

#	 1	 0	 1 ,	 A
D
D	

,	 1	 1	 ,	 1	 1	 0	 #	

•  first	 argument	 is	 in	 register	 11	 so	 search	
register	 tape	 for:	

qadd	

#	 1	 1	 ,	 <bitstring>	

•  then	 copy	 <bitstring>	 to	 worktape	 1	
•  similarly,	 search	 for,	 find,	 place	 value	 of	
register	 110	 onto	 worktape	 2	

Example	 (cont.)	

•  Now	 go	 to	 subrouOne	 to	 add	 worktape	 1	 +	
worktape	 2,	 place	 results	 on	 worktape	 3.	

•  Result	 must	 go	 back	 into	 register	 11	

•  Search	 register	 tape	 again	 for	 	
#	 1	 1	 ,	 <bitstring>	

•  Replace	 <bitstring>	 with	 new	 value	 copied	
from	 worktape	 3,	 shiRing	 as	 necessary	

•  Add	 1	 to	 instrucOon-‐locaOon	 tape	

RAM	 simula,on	
•  MANY	 details	 leR	 out	
•  Other	 types	 of	 instrucOons	 are	 similar	

•  Number	 of	 steps	 to	 simulate	 RAM?	

•  Delicate	 issue....	 does	 RAM	 actually	 have	
constant-‐Ome	 access	 to	 infinite	 memory?	

•  Can	 show	 (beyond	 this	 course)	 for	
“reasonable”	 Ome	 model	 on	 a	 RAM,	 if	 T(n)	
steps	 are	 required,	 then	 on	 a	 TM,	 only	 T(n)2	

steps.	 	 (T(n)3	 if	 RAM	 has	 mult.	 and	 div.)	

Church-‐Turing	 thesis	
•  TMs	 capture	 noOon	 of	 “computable”	
•  Evidence	
–  RAM	 computer	
–  general	 recursive	 funcOons	 (Gödel	 &	 Herbrand)	

•  constant/projecOon/successor/composiOon/recursion	

–  	 λ-‐calculus	 (Church)	 for	 defining	 funcOons	 (CS	 421)	
–  general	 string-‐rewriOng-‐system	

•  unrestricted	 grammar,	 producOons	 of	 form	 α	 	 β	 for	 any	 α	
and	 β	

–  aaempts	 to	 extend	 TMs	

All	 give	 you	 exactly	 the	 TM-‐computable	 func,ons	

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Storing Multiple Tapes

0 1 1 t

1 0 t t
finite-state

control

Multi-tape TM M

(1, ·, 0, ∗) (0, ∗, 1, ·) (t, ·, 1, ·) t

finite-state
control

1-tape equivalent single(M)

Store in cell i contents of cell i of all tapes.

“Mark” head position
of tape with ∗.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Storing Multiple Tapes

0 1 1 t

1 0 t t
finite-state

control

Multi-tape TM M

(1, ·, 0, ∗) (0, ∗, 1, ·) (t, ·, 1, ·) t

finite-state
control

1-tape equivalent single(M)

Store in cell i contents of cell i of all tapes. “Mark” head position
of tape with ∗.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Storing Multiple Tapes

0 1 1 t

1 0 t t
finite-state

control

Multi-tape TM M

(1, ·, 0, ∗) (0, ∗, 1, ·) (t, ·, 1, ·) t

finite-state
control

1-tape equivalent single(M)

Store in cell i contents of cell i of all tapes. “Mark” head position
of tape with ∗.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.

2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.

Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.

Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.

Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.
Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.
Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.
Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM.

So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi)

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi)

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi)

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi); case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi); case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi); case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.

Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA

but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Computation

cε = q0w

c1 · · · ci · · · · · · cr

· · · · · · cij · · · cr1 · · · crr

· · · · · ·

If r = maxq,X |δ(q,X)| then the runs of M can be organized
as an r -branching tree.

ci1i2···in is the configuration of M after n-steps, where choice i1
is taken in step 1, i2 in step 2, and so on.

Input w is accepted iff ∃ accepting configuration in tree.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Computation

cε = q0w

c1 · · · ci · · · · · · cr

· · · · · · cij · · · cr1 · · · crr

· · · · · ·

If r = maxq,X |δ(q,X)| then the runs of M can be organized
as an r -branching tree.

ci1i2···in is the configuration of M after n-steps, where choice i1
is taken in step 1, i2 in step 2, and so on.

Input w is accepted iff ∃ accepting configuration in tree.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Computation

cε = q0w

c1 · · · ci · · · · · · cr

· · · · · · cij · · · cr1 · · · crr

· · · · · ·

If r = maxq,X |δ(q,X)| then the runs of M can be organized
as an r -branching tree.

ci1i2···in is the configuration of M after n-steps, where choice i1
is taken in step 1, i2 in step 2, and so on.

Input w is accepted iff ∃ accepting configuration in tree.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree.

Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M

(note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M

(note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M (note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M (note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M (note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Execution of det(M)

1 Initially: Input tape contains w , simulation tape and choice
tape are blank

2 Copy contents of input tape onto simulation tape
3 Simulate M using simulation tape as its (only) tape

1 At the next step of M, if state is q, simulation tape head reads
X , and choice tape head reads i , then simulate the ith
possibility in δ(q,X); if i is not a valid choice, then goto step 4

2 After changing state, simulation tape contents, and head
position on simulation tape, move choice tape’s head to the
right. If Tape 3 is now scanning t, then goto step 4

3 If M accepts then accept and halt, else goto step 3(1) to
simulate the next step of M.

4 Write the lexicographically next choice sequence on choice
tape, erase everything on simulation tape and goto step 2.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Deterministic Simulation
In a nutshell

det(M) simulates M over and over again, for different
sequences, and for different number of steps.

If M accepts w then there is a sequence of choices that will
lead to acceptance. det(M) will eventually have this sequence
on choice tape, and then its simulation M will accept.

If M does not accept w then no sequence of choices leads to
acceptance. det(M) will therefore never halt!

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Deterministic Simulation
In a nutshell

det(M) simulates M over and over again, for different
sequences, and for different number of steps.

If M accepts w then there is a sequence of choices that will
lead to acceptance. det(M) will eventually have this sequence
on choice tape, and then its simulation M will accept.

If M does not accept w then no sequence of choices leads to
acceptance. det(M) will therefore never halt!

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Deterministic Simulation
In a nutshell

det(M) simulates M over and over again, for different
sequences, and for different number of steps.

If M accepts w then there is a sequence of choices that will
lead to acceptance. det(M) will eventually have this sequence
on choice tape, and then its simulation M will accept.

If M does not accept w then no sequence of choices leads to
acceptance. det(M) will therefore never halt!

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it.

There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

