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Closure under union
 
•	 Theorem: FA-recognizable languages are closed 

under union. 
•	 Old Proof: 

–	 Start with DFAs M1 and M2 for the same alphabet Σ. 
–	 Get another DFA, M3, with L(M3) = L(M1) ∪ L(M2). 
– Idea: Run M1 and M2 “in parallel” on the same input.  If 

either reaches an accepting state, accept. 



Closure under union
• Example: 
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Closure under union, general rule 
•	 Assume: 

– M1 = ( Q1, Σ, δ1, q01, F1 ) 
– M2 = ( Q2, Σ, δ2, q02, F2 ) 

•	 Define M3 = ( Q3, Σ, δ3, q03, F3 ), where 
– Q3 = Q1 × Q2 

• Cartesian product, {(q1,q2) | q1∈Q1 and q2∈Q2 } 
– δ3 ((q1,q2), a) = (δ1(q1, a), δ2(q2, a)) 
– q03 = (q01, q02)
 
– F3 = {  (q1,q2) | q1 ∈ F1 or q2 ∈ F2 }
 



Closure under union
 
•	 Theorem: FA-recognizable languages are closed 

under union. 
•	 New Proof: 

–	 Start with NFAs M1 and M2. 

–	 Get another NFA, M3, with L(M3) = L(M1) ∪ L(M2). 


M1 

Use final statesε 
from M1 and M2. 

M2
Add new ε
 
start state
 



Closure under union
 

•	 Theorem: FA-recognizable languages are 
closed under union. 

•	 New Proof: Simpler! 

•	 Intersection: 
– NFAs don’t seem to help. 

•	 Concatenation, star: 
– Now try NFA-based constructions. 



Closure under concatenation
 
• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 } 
•	 Theorem: FA-recognizable languages are closed

under concatenation. 
•  Proof:  

–	 Start with NFAs M1 and M2. 

–	 Get another NFA, M3, with L(M3) = L(M1) ◦ L(M2). 


M1 M2 
ε 

ε 

These are no longer 
final states. 

These are still
 
final states.
 



Closure under concatenation
 

• Example: 
– Σ = { 0, 1}, L1 = Σ*, L2 = {0} {0}*.
 
– L1 L2 = strings that end with a block of at least 
 

one 0
 

– M1:
 

– M2: 

– Now combine: 

0,1 

0 
0 

NFAs 

0,1 
0 

0
ε 



Closure under star
 
• 	L* = { x | x = y1 y2 … yk for some k ≥ 0, every y in L } 

= L0 ∪ L1 ∪ L2 ∪ … 
•	 Theorem: FA-recognizable languages are closed under 

star. 
•  Proof:  

–	 Start with FA M1. 

–	 Get an NFA, M2, with L(M2) = L(M1)*. 


Use final states 
from M1 and M2. 

M1
ε 

Add new start 
state; it’s also 

ε 

ε 

a final state, 
since ε is in 
L(M1)*. 



Closure under star
 
• Example: 

– Σ = { 0, 1}, L1 = { 01, 10 }
 
– (L1)* = even-length strings where each pair
 

consists of a 0 and a 1. 
– M1: ε 

0 1 

ε 
1 0 

– Construct M2: 
ε 

ε 

ε 

0 1 

1 0 

ε 

ε 



Languages denoted by regular 
 
expressions
 

•	 The languages denoted by regular expressions 
are exactly the regular (FA-recognizable) 
languages. 

•	 Theorem 1: If R is a regular expression, then L(R) 
is a regular language (recognized by a FA). 

•  Proof:  Easy. 
•	 Theorem 2: If L is a regular language, then there 

is a regular expression R with L = L(R). 
•  Proof:  Harder, more technical. 



Theorem 1
 
•	 Theorem 1: If R is a regular expression, then L(R) 

is a regular language (recognized by a FA). 
•  Proof:  

–	 For each R, define an NFA M with L(M) = L(R). 
–	 Proceed by induction on the structure of R: 

•	 Show for the three base cases. 
•	 Show how to construct NFAs for more complex expressions 

from NFAs for their subexpressions. 

–	 Case 1: R = a 
•	 L(R) = { a }                Accepts only a. 

a 

–	 Case 2: R = ε 
•  L(R) = {  ε } ε. 

Accepts only 



Theorem 1
 
•	 Theorem 1: If R is a regular expression, then L(R) 

is a regular language (recognized by a FA). 
•  Proof:  

–	 Case 3: R = ∅

•  L(R) =  ∅ Accepts nothing. 

–	 Case 4: R = R1 ∪ R2 
• M1 recognizes L(R1), 	 M1 

• M2 recognizes L(R2). ε 

•	 Same construction 

we used to show 

regular languages 
 M2 

are closed under ε

union. 




Theorem 1
 
•	 Theorem 1: If R is a regular expression, then L(R) 

is a regular language (recognized by a FA). 
• 	Proof:  

–	 Case 5: R = R1 ° R2 
• M1 recognizes L(R1), 
• M2 recognizes L(R2). 

•	 Same construction we used to show regular languages are 
closed under concatenation. 

M1 M2 
ε 

ε 



ε

ε

Theorem 1
 
•	 Theorem 1: If R is a regular expression, then L(R) 

is a regular language (recognized by a FA). 
• 	Proof:  

–	 Case 6:  R = (R1)* 
• M1 recognizes L(R1), 

•	 Same construction we used to show regular languages are 
closed under star. 

M1
ε 



Example for Theorem 1 
• L = ab ∪ a* 
• Construct machines recursively: 
• a:  a b: b
 

• ab: a bε 

ε

ε a 
• a*: 

a ε b 

ε

ε 

a• ab ∪ a*: ε ε 



Theorem 2
 
•	 Theorem 2: If L is a regular language, then there

is a regular expression R with L = L(R). 
•  Proof:  

– For each NFA M, define a regular expression R with 

L(R) = L(M). 


–	 Show with an example: 

b
x y z

b a a 


a	 b 

– Convert to a special form with only one final state, no 
incoming arrows to start state, no outgoing arrows from
final state. 

b
x y z qfq0

b a a 
ε a b ε 



Theorem 2
 

b
xq0 y z qf

b a a 
ε a b ε 

•	 Now remove states one at a time (any order), replacing 
labels of edges with more complicated regular expressions. 

•	 First remove z: 

b
x y qfq0

b a 
ε a b a* 

•	 New label b a* describes all strings that can move the 
machine from state y to state qf, visiting (just) z any
number of times. 



Theorem 2
 

b
x yq0 qf

b a 
ε a b a* 

•	 Then remove x: a ∪ bb* a 
b a*b*a 

yq0 qf 

•	 New label b*a describes all strings that can move the 
machine from q0 to y, visiting (just) x any number of times. 

• New label a ∪ bb* a describes all strings that can move the 
 
machine from y to y, visiting (just) x any number of times.
 



Theorem 2
 

yq0 qf

a ∪ bb* a 
b*a b a* 

•	 Finally, remove y: 

b*a (a ∪ bb* a)* b a* 
q0 qf 

•	 New label describes all strings that can move the machine 
from q0 to qf, visiting (just) y any number of times. 

•	 This final label is the needed regular expression. 



Theorem 2
 
•	 Define a generalized NFA (gNFA). 

–	 Same as NFA, but: 
•	 Only one accept state, ≠ start state. 
•	 Start state has no incoming arrows, accept state no outgoing arrows. 
•	 Arrows are labeled with regular expressions. 


–	 How it computes:  Follow an arrow labeled with a regular 

expression R while consuming a block of input that is a word in the 
language L(R). 

•	 Convert the original NFA M to a gNFA. 
•	 Successively transform the gNFA to equivalent gNFAs

(recognize same language), each time removing one state. 
•	 When we have 2 states and one arrow, the regular 

expression R on the arrow is the final answer: 

R
 

q0 qf 



we get: 

Theorem 2
 
•	 To remove a state x, consider every pair of other states, y 

and z, including y = z. 
•	 New label for edge (y, z) is the union of two expressions:
 

–	 What was there before, and 
–	 One for paths through (just) x. 

y	 

x

z

y x

R 
R ∪ SU*T• If y  ≠ z: 
 we get:
 y z 

S T 

U 

R U R ∪ SU*T 
S •	 If y = z:              y 

T
 


