BBM401-Lecture 4: Regular expressions equivalence with NFAs, DFAs, closure properties of regular languages

Lecturer: Lale Özkahya

Resources for the presentation:
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-045j-automata-computability-and-
complexity-spring-2011/Syllabus/

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- Old Proof:
- Start with DFAs M_{1} and M_{2} for the same alphabet Σ.
- Get another DFA, M_{3}, with $L\left(M_{3}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Idea: Run M_{1} and M_{2} "in parallel" on the same input. If either reaches an accepting state, accept.

Closure under union

- Example:
M_{1} : Substring 01

M_{2} : Odd number of 1 s

Closure under union, general rule

- Assume:

$$
\begin{aligned}
& -M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right) \\
& -M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)
\end{aligned}
$$

- Define $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, \mathrm{q}_{03}, \mathrm{~F}_{3}\right)$, where $-Q_{3}=Q_{1} \times Q_{2}$
- Cartesian product, $\left\{\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) \mid \mathrm{q}_{1} \in \mathrm{Q}_{1}\right.$ and $\left.\mathrm{q}_{2} \in \mathrm{Q}_{2}\right\}$
$-\delta_{3}\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)$
$-q_{03}=\left(q_{01}, q_{02}\right)$
$-F_{3}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in F_{1}\right.$ or $\left.q_{2} \in F_{2}\right\}$

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- New Proof:
- Start with NFAs M_{1} and M_{2}.
- Get another NFA, M_{3}, with $L\left(M_{3}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.

Use final states from M_{1} and M_{2}.

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- New Proof: Simpler!
- Intersection:
- NFAs don't seem to help.
- Concatenation, star:
- Now try NFA-based constructions.

Closure under concatenation

- $L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
- Theorem: FA-recognizable languages are closed under concatenation.
- Proof:
- Start with NFAs M_{1} and M_{2}.
- Get another NFA, M_{3}, with $L\left(M_{3}\right)=L\left(M_{1}\right) \circ L\left(M_{2}\right)$.

Closure under concatenation

- Example:
$-\Sigma=\{0,1\}, L_{1}=\Sigma^{\star}, L_{2}=\{0\}\{0\}^{*}$.
$-L_{1} L_{2}=$ strings that end with a block of at least one 0
$-M_{1}$:

$-M_{2}$:

NFAs

- Now combine:

Closure under star

- $L^{*}=\left\{x \mid x=y_{1} y_{2} \ldots y_{k}\right.$ for some $k \geq 0$, every y in $\left.L\right\}$
$=L^{0} \cup L^{1} \cup L^{2} \cup \ldots$
- Theorem: FA-recognizable languages are closed under star.
- Proof:
- Start with FA M M_{1}.
- Get an NFA, M_{2}, with $L\left(M_{2}\right)=L\left(M_{1}\right)^{*}$.

Closure under star

- Example:
$-\Sigma=\{0,1\}, L_{1}=\{01,10\}$
$-\left(L_{1}\right)^{*}=$ even-length strings where each pair consists of a 0 and a 1.
$-M_{1}$:
- Construct M_{2} :

Languages denoted by regular expressions

- The languages denoted by regular expressions are exactly the regular (FA-recognizable) languages.
- Theorem 1: If R is a regular expression, then $\mathrm{L}(\mathrm{R})$ is a regular language (recognized by a FA).
- Proof: Easy.
- Theorem 2: If L is a regular language, then there is a regular expression R with $L=L(R)$.
- Proof: Harder, more technical.

Theorem 1

- Theorem 1: If R is a regular expression, then $L(R)$ is a regular language (recognized by a FA).
- Proof:
- For each R, define an NFA M with $L(M)=L(R)$.
- Proceed by induction on the structure of R :
- Show for the three base cases.
- Show how to construct NFAs for more complex expressions from NFAs for their subexpressions.
- Case 1: R = a
- $L(R)=\{a\}$
- Case 2: $\mathrm{R}=\varepsilon$
- $L(R)=\{\varepsilon\}$

Accepts only a.

Accepts only

Theorem 1

- Theorem 1: If R is a regular expression, then $L(R)$ is a regular language (recognized by a FA).
- Proof:
- Case 3: $\mathrm{R}=\varnothing$
- $L(R)=\varnothing$

Accepts nothing.

- Case 4: $R=R_{1} \cup R_{2}$
- M_{1} recognizes $L\left(R_{1}\right)$,
- M_{2} recognizes $L\left(R_{2}\right)$.
- Same construction we used to show regular languages are closed under union.

Theorem 1

- Theorem 1: If R is a regular expression, then $L(R)$ is a regular language (recognized by a FA).
- Proof:
- Case 5: $R=R_{1}{ }^{\circ} R_{2}$
- M_{1} recognizes $L\left(R_{1}\right)$,
- M_{2} recognizes $L\left(R_{2}\right)$.
- Same construction we used to show regular languages are closed under concatenation.

Theorem 1

- Theorem 1: If R is a regular expression, then $L(R)$ is a regular language (recognized by a FA).
- Proof:
- Case 6: $\mathrm{R}=\left(\mathrm{R}_{1}\right)^{*}$
- M_{1} recognizes $L\left(R_{1}\right)$,
- Same construction we used to show regular languages are closed under star.

Example for Theorem 1

- $L=a b \cup a^{*}$
- Construct machines recursively:
- a:

- ab:

- a^{*} :

- $a b \cup a^{*}$:

Theorem 2

- Theorem 2: If L is a regular language, then there is a regular expression R with $L=L(R)$.
- Proof:
- For each NFA M, define a regular expression R with $L(R)=L(M)$.
- Show with an example:

- Convert to a special form with only one final state, no incoming arrows to start state, no outgoing arrows from final state.

Theorem 2

- Now remove states one at a time (any order), replacing labels of edges with more complicated regular expressions.
- First remove z:

- New label ba* describes all strings that can move the machine from state y to state q_{f}, visiting (just) z any number of times.

Theorem 2

- Then remove x :

- New label b*a describes all strings that can move the machine from q_{0} to y , visiting (just) x any number of times.
- New label $\mathrm{a} \cup \mathrm{bb}^{*}$ a describes all strings that can move the machine from y to y , visiting (just) x any number of times.

Theorem 2

- Finally, remove y :

- New label describes all strings that can move the machine from q_{0} to q_{f}, visiting (just) y any number of times.
- This final label is the needed regular expression.

Theorem 2

- Define a generalized NFA (gNFA).
- Same as NFA, but:
- Only one accept state, \neq start state.
- Start state has no incoming arrows, accept state no outgoing arrows.
- Arrows are labeled with regular expressions.
- How it computes: Follow an arrow labeled with a regular expression R while consuming a block of input that is a word in the language $L(R)$.
- Convert the original NFA M to a gNFA.
- Successively transform the gNFA to equivalent gNFAs (recognize same language), each time removing one state.
- When we have 2 states and one arrow, the regular expression R on the arrow is the final answer:

Theorem 2

- To remove a state x, consider every pair of other states, y and z, including $y=z$.
- New label for edge (y, z) is the union of two expressions:
- What was there before, and
- One for paths through (just) x.
- If $\mathrm{y} \neq \mathrm{z}$:

we get:

- If $\mathrm{y}=\mathrm{z}$:

